
Tom-based tools to transform EMF models in
avionics context

Jean-Christophe Bach1,2,3, Pierre-Etienne Moreau1,2,3, and Marc Pantel4

1 Inria, Villers-lès-Nancy, F-54600, France
2 Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France

3 CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France
jeanchristophe.bach@inria.fr, pierre-etienne.moreau@loria.fr

4 INPT-IRIT, Université de Toulouse, Toulouse, France
marc.pantel@enseeiht.fr

Abstract. Model Driven Engineering (MDE) is now widely used in
many industrial contexts (such as AeroSpace) which require a high level
of system safety. Model-checking is one of the formal techniques which
are used to assess a system compliance to its requirements. It relies on
verification dedicated languages to model the system under verification
and the expected properties. In order to ease the use of these tools,
model transformations are provided that translate the end user provided
system model to the formal languages than can be verified. In order to
rely on these activities for system certification, the correctness of these
transformation steps must be assessed (qualification of the development
and verification tools). One of the goal of our work is to provide tools to
implement the transformation steps between end user source languages
used for the system development and target languages used for formal
verification. This paper present the Tom rule-based approach used in a
research project involving industrial partners: Airbus and Ellidiss.

1 Introduction and related work

New safety critical system development chains are based on Domain Specific
Modeling Languages (DSML) and on qualified model transformations (that pre-
serve required properties) between these DSMLs. The quarteFt5 project aims to
develop technologies to make this approach easier in the field of real-time embed-
ded systems. The associated case study relies on Fiacre6, which is an intermedi-
ate language used for formal verification of real-time aspects in the TOPCASED7

project. Starting from an avionic model expressed in AADL8, the goal is to ex-
tract a behavioral model and its intended properties which can be verified by a
5 The quarteFt project (http://quarteft.loria.fr/) is funded by FNRAE (http:
//www.fnrae.org/), a French research foundation for aeronautics and space.

6 http://projects.laas.fr/fiacre/
7 http://www.topcased.org/
8 Architecture Analysis & Design Language, formerly Avionics Architecture Descrip-
tion Language, http://www.aadl.info/

http://quarteft.loria.fr/
http://www.fnrae.org/
http://www.fnrae.org/
http://projects.laas.fr/fiacre/
http://www.topcased.org/
http://www.aadl.info/

model-checker such as TINA9 or CADP10. To make this transformation simpler,
several intermediate languages have been introduced: basic and parametrized
Fiacre; and a real-time extension to Fiacre (RT-Fiacre). The following parts show
how a rule based language, implemented in the Tom framework [1,2], can be used
to express the AADL2Fiacre transformation in an expressive and executable way.

In MDE , many domain specific languages (DSLs) have been developed to
manipulate and transform models, trying to implement the Query View Trans-
formation QVT standard defined by the Object Management Group (OMG).
QVT proposes two main approaches: relational and operational. The latter re-
quires to describe explicitly the control as part of the transformation whereas
it is handled implicitly by the execution engine for relational one. The opera-
tional approach expresses a transformation as a sequence of elementary steps
that builds the resulting model step by step from the source model. It can be
implemented using DSL such as Kermeta[3], QVT-Operational, or GPL (General
Purpose Languages) such as Java using reflexive libraries or generated code such
as Eclipse Modeling Framework (EMF) [4]. The relational approach defines a
model transformation as the relations that must exist between the source and
the target models at the end of the transformation. Some transformations are
not directly executable. When they can be executed, they are usually translated
into an operational transformation.

A third approach [5] can be considered: the introduction of intermediate
representations such as XML or any textual concrete syntax. The model trans-
formation can then be described using a language such as XSLT or any concrete
language transformation toolset like ASF+SDF11, Rascal [6], Spoofax(based on
Stratego/XT) [7,8], etc.

Implementations of transformations may be written using GPL or DSL. Both
of these approaches have advantages and drawbacks: GPL are usually well equipped
with multiple libraries and external tools and are well known from the common
software engineer. However some specific tasks may be difficult to implement
whereas DSL may be more precise and efficient. Integration and maintainability
has also to be taken in account when choosing a language to transform models.
DSLs are usually not known by most software engineers and a significant cost
must be spent in their learning and the development of associated tools.

ATL [9] does not rely on the QVT concrete syntax but implements most of
the operational and part of the relational approaches from QVT. It fills a part
of the gap (use of both relational and operational approches), but is still a full
new language that must be learnt from scratch.

This contribution proposes to bridge previous approaches by embedding a
DSL into a GPL, to take advantages both of GPLs tooling and DSL expressivity.
As the Tom language is compiled into Java relying on model management li-
braries like EMF, the end user can benefit from both classical programming, and
model transformation technologies (operational and relational), without major

9 http://www.laas.fr/tina/
10 http://cadp.inria.fr/
11 http://www.meta-environment.org/Meta-Environment/ASF%2BSDF/

http://www.laas.fr/tina/
http://cadp.inria.fr/
http://www.meta-environment.org/Meta-Environment/ASF%2BSDF/

efficiency penalty and without the additional cost of learning a completely new
language. Therefore Java developers have only to learn few new constructs to
use within a Java program to easily implement a model transformation, contrary
to the use of a dedicated transformations language such as Kermeta which are
more complete for this task but also much more complex. By remaining in the
Java world, developers can benefit from a third advantage of our approach: keep
using existing Java tooling.

The rest of the paper is organized as follows. Section 2 presents the Tom-
based tools we developed to transform EMF models. Section 3 introduces the
transformations chain and the industrial use case AADL2Fiacre, then it explains
the use of Tom in this context. Section 4 concludes and presents current and
future work.

2 Tom-based tools to transform EMF models

Tom is a language designed to extend general-purpose programming languages
(Java, C, C#, Python and Caml) by providing term rewriting, pattern matching
and strategic programming facilities. Tom is well-suited for implementing pro-
grams that manipulate tree structures such as AST (Abstract Syntax Tree) or
XML documents. Only the main constructs of the language that are used in the
case study will be presented, but the interested reader may refer to the Tom
reference manual12.

2.1 Short introduction to Tom

Pattern-matching. The main Tom feature is pattern-matching using the %match
construct. It is a generalization of switch-case construct which can be applied to
any data-structure, and not only to atomic types like switch-case. It is composed
of a set of rules where the left-hand side is a pattern (having a tree structure),
and the right-hand side is an action (a block of host and Tom code).

Backquote construct. The backquote (character ‘) is the Tom construct which
allows to build a new algebraic term or to retrieve the value of a variable instan-
tiated by pattern matching.

Listing 1.1 illustrates the use of %match and ‘: at line 1, a TypeDeclaration
is created with ‘. It has two parameters: rec is the value of the type, and "int"
is the name of the type. Then, at line 2, this TypeDeclaration is given as
the parameter (called subject) of the %match construct. Line 3 shows how to
write a transformation rule: on the left-hand side, the patterns checks that the
subject corresponds to a TypeDeclaration. In this example, the variable name is
instantiated by the first argument ("int" in this case). The second argument of
the pattern is a nested pattern which recursively checks that the second subterm
of typeDecl is rooted by RecordType_fiacre, etc.. It is also possible to consider

12 http://tom.loria.fr/

http://tom.loria.fr/

disjunction (||) and conjunction (&&) of patterns. The right-hand side of the
rule is the action (-> {...}), composed of a block of Tom+Java code. In this
example, the variable name is printed.

1 TypeDeclaration typeDecl = ‘TypeDeclaration("int",rec);
2 %match(typeDecl) {
3 TypeDeclaration(name,RecordType_fiacre(RecordTypeLabelEList())) −> {
4 System.out.println(‘name);
5 ...
6 }
7 }

Listing 1.1: Example of %match and backquote constructs

Strategic-programming. Strategic programming is a way to increase the con-
trol over the application of rewriting rules. Strategies — implemented by the
%strategy construct — allow to dissociate the treatment (rewriting rules) and
the control (tree traversal). Then complex strategies can be obtained by composi-
tion of elementary transformation strategies and combinators such as Sequence,
Repeat, TopDown, and the recursion for instance. For the interested reader, more
detail can be found in [10]. Listing 1.2 shows the use of %strategy construct
and how a strategy can be composed and called (line 8). DataTrans() is an ele-
mentary strategy. TopDown(DataTrans()) is also a strategy. visit is a method
which apply a strategy on a given term (subject in this example).

1 %strategy DataTrans() extends Identity() {
2 visit DataImplementation {
3 dt@DataImplementation[name=name] −> { <Tom+Java code block> }
4 }
5 }
6 public static void main(String[] args) {
7 ...
8 ‘TopDown(DataTrans()).visit(subject);
9 ...

10 }

Listing 1.2: Example of %strategy construct

Algebraic views (mappings). In order to be able to use pattern-matching fea-
ture, one has to establish an anchor between the implementation data-structure
(i.e. the Java classes) and the Tom algebraic signature. This is done by a mech-
anism called mapping. It is composed of two constructs: %typeterm and %op.
As shown in Listing 1.3, %typeterm associates the algebraic sort (DataImplementation)
to the implementation data-type (org.osate.aadl2.DataImplementation) with
the construct implement. The equals construct defines an equality predicate.

1 %typeterm DataImplementation {
2 implement { org.osate.aadl2.DataImplementation }
3 equals(t1,t2) { t1.equals(t2) }
4 }

Listing 1.3: Example of %typeterm construct

The %op construct illustrated in Listing 1.4 specifies how to view a Java ob-
ject as a Tom constructor. The predicate is_fsym(t) should be true when the
Java object t can be seen as the considered constructor (DataImplementation

in this example). get_slot specifies how to retrieve a given field of the data-
structure. make defines how to build an instance of the constructor and is used
by ‘ construct to build terms. This example relies on the EMF reflexive frame-
work. It could also rely on the generated classes. However, these ones are also
implemented using the reflexive framework. This work thus also follows that
scheme.

1 %op DataImplementation DataImplementation(name : String, ..., noPrototypes : boolean) {
2 is_fsym(t) { t instanceof org.osate.aadl2.DataImplementation }
3 get_slot(name, t) { t.eGet(t.eClass().getEStructuralFeature("name")) }
4 get_slot(noPrototypes, t) { t.eGet(t.eClass().getEStructuralFeature("noPrototypes")) }
5 ...
6 make(name, ..., noPrototypes, ...) { new DataImplementation(name, ..., noPrototypes) }
7 }

Listing 1.4: Example of %op construct

%oplist and %oparray are variant of %op for list operators (see List-
ing 1.5) used for associative and associative/commutative operators. Their use
is similar to %op, but they define additional constructs to build a list and to
retrieve a given element in a list, and the size of a list.

1 %typeterm RecordTypeLabelEList {
2 implement { org.eclipse.emf.common.util.EList<fiacre.RecordTypeLabel> }
3 equals(t1,t2) { ... }
4 }
5 %oparray RecordTypeLabelEList RecordTypeLabelEList (RecordTypeLabel∗) {
6 is_fsym(t) { ... }
7 make_empty(n) { /∗ allocate a list of size n ∗/ }
8 make_append(e,l) { /∗ add an element e to the end of the list l ∗/ }
9 get_element(l,n) { /∗ get the n−th element of the list l ∗/ }

10 get_size(l) { /∗ returns the size of the list l ∗/ }
11 }

Listing 1.5: Example of variadic operator mapping

2.2 Tom-EMF: from EMF representation to Tom representation

Tom-EMF is a tool whose goal is to offer a support to manipulate EMF data-
structures with Tom. It is composed of two main elements: EcoreContain-
mentIntrospector which is used for using strategies on EMF elements, and
a mappings generator. This latter loads and inspects a Java meta-model imple-
mentation generated by Eclipse from an ECore file. It retrieves all the EClassi-
fier (EClass and EDataType) and EStructuralFeatures in order to generate the
corresponding %typeterm and %op constructs. These mappings will be the
view for EMF elements in Tom. For instance, the mappings presented in List-
ing 1.3 and Listing 1.4 have been automatically generated by Tom-EMF from
the aadl2fiacre.jar archive, which corresponds to java classes which are au-
tomatically generated by EMF from an ECore meta-model. If a reference shows
that an element may have many instances (which is represented by a collection),
the Tom-EMF tool generates list operators such as RecordTypeLabelEList il-
lustrated in Listing 1.5.

2.3 %transformation: an easy way to express a model
transformation in Tom+Java

To write a model transformation, one can use full Java or Tom+Java. In the case
of Tom+Java, every elementary transformation composing the whole transfor-
mation can be encoded by a strategy. This approach is appropriate for simple
transformations, but in some cases, an elementary transformation is dependent
on elements created by another one. For instance, let us consider two transfor-
mations transA and transB, which respectively transform elements of sorts A and
B. The result of transA may need to be connected to some elements produced
by transB. A way to express these connexions is thus needed.

This problem can be addressed in two ways:

1. a first solution consists in finding a general strategy (usually a recursive one)
which inspect the model and transforms the elements in an order such that
all the links can be built during the transformation itself. Unfortunately such
a strategy does not always exist.

2. a second approach consists in not considering any particular order for the
transformation steps. In that case, an additional mechanism has to be pro-
vided in order to denote and to build a link to an element which results from
a transformation. This operation is called link resolution in the following.
This approach is derived from the one available in ATL and the relational
part of QVT.

A method using the second solution to implement a models transformation
with Tom+Java is explained in [11]. It constitutes the core contribution of the
new higher-level Tom %transformation construct. It addresses the problem
and hides a part of the work from the developer. %transformation is a con-
struct composed of a set of definitions (corresponding to Tom strategies) which
may have one or many rules (corresponding to rules of rewriting strategies). An
example is given in the next section (see Listing 1.9). The grammar of %trans-
formation construct is given by Listing 1.6 in Appendix A.

As the execution order of transformation steps is not considered, some defi-
nition may need to reference an element created in another transformation step
definition in order to be able to assemble the elements resulting from the various
steps. It also may create an element which has to be referenced in another trans-
formation step. That is the reason why we introduced two new Tom constructs
to be able to perform the link resolution: %tracelink and %resolve. They
build a link model during the transformation steps to keep references between
the source and the target. Then, it is used to resolve the links once all target
elements have been created. These constructs ensure a form of traceability of
the transformation, which is a mandatory step to be able to verify it.

%tracelink whose syntax is given by Listing 1.7 in Appendix A allows to
save in the link model an element which will be necessary in another step. It
takes three parameters: the name and the type the element has, and the term
itself. In the link model, a field of the defined type having the given name will

be created. The object will be instantiated with the object represented by the
backquote term.

%resolve construct whose grammar is shown in Listing 1.8 (in Appendix A)
can be considered as the corresponding construct of %tracelink. It creates a
virtual element the developer can manipulate in a definition as if it were the one
he needs (whether it has effectively already been created or not). This kind of
elements is removed at the end of the transformation during the link resolution.
The first two parameters of a %resolve construct are the name and the type
of a source element. The last two parameters are the name and the type of
a resulting element obtained by the transformation of the source element in
another definition.

3 An industrial use case in avionics: AADL2Fiacre

This case study consists in transforming an AADL model into a Fiacre model in
order to verify this one with TINA. This concrete use case is being implemented
by the Ellidiss Software13 company in Adele14 to address the needs of Airbus15
in the quarteFt project.

Important note: due to industrial constraints, all source code and documents
produced during quarteFt project are still unavailable for public use. All materials
will be released publicly after the end of the project.

AADL. AADL [12] is an architecture description language initially developed
for avionics domain. It is designed for modeling the software and hardware ar-
chitecture of embedded real-time systems, more particularly in the context of
automotive engineering, aeronautics and aerospace. The purpose of AADL lan-
guage is to describe an architecture to be able to analyze the system, to verify
properties, to generate code and documentation, etc.. Components may be de-
fined to model a part of the system. Each component may contain one or many
sub-components, and it may be connected to other components to build a more
complex system by simulating a network. In the context of quarteFt, AADL is
the starting point of the transformations chain.

Fiacre. Fiacre16 is a high level description language designed for representing
both the behavioral and timing aspects of embedded and distributed systems
for formal verification and simulation purposes. In the quarteFt project, the last
transformation step is the compilation of Fiacre descriptions into Time Transition
Systems (TTS) for TINA.
13 http://www.ellidiss.com/
14 TOPCASED AADL editor : http://gforge.enseeiht.fr/projects/adele/
15 http://www.airbus.com
16 Fiacre stands for "Format Intermédiaire pour les Architectures de Composants Ré-

partis Embarqués", french for "Intermediate Format for the Embedded Distributed
Component Architectures".

http://www.ellidiss.com/
http://gforge.enseeiht.fr/projects/adele/
http://www.airbus.com

For a detailed explanation of Fiacre language, the reader is invited to refer
to [13] where the use case is a first proposal of AADL2Fiacre transformation
written in Kermeta. Although ATL and Kermeta have been experienced and were
useful tools to precise a part of the project, major issues concerning performance
and integration constraints led to consider Tom as the transformation language
used in quarteFt. Moreover, the declarative way to write a transformation in Tom
is well adapted to correctness proof construction.

AADL2Fiacre. Because of the complexity of the whole transformation and
the lack of place, this work focuses on a part of the step which transforms AADL
model to RT-Fiacre (Real-Time Fiacre) model. This transformation can be di-
vided into six elementary transformations: AADL.Data, AADL.Thread, AADL.-
ThreadImpl, AADL.BehaviorAnnex, AADL.System and AADL.Process transla-
tions.

Due to space constraints and because this transformation is still under de-
velopment, the six elementary transformations will not be detailled. Snippets
of code will be extracted from the shortest and easiest one: the translation of
AADL Data into RT-Fiacre Record.

To begin this transformation, one has to generate the Tom mappings to
have an algebraic representation of models. Starting from source meta-model
aadl2.ecore 17 and target meta-model fiacre.ecore18, one generates with
EMF the corresponding Java code which will be used during the transformation.
Then, one uses Tom-EMF tool to generate AADL and Fiacre mappings.

This transformation step consists in generating a RT-Fiacre type-record (Re-
cordType_fiacre) for each Data component (implemented by DataImplemen-
tation. Each data-field declared in the subcomponents part corresponds to a
field of the RT-Fiacre record.

By using Tom, this elementary transformation can be implemented by a single
strategy composed with a TopDown traversal strategy or being a definition of a
%transformation construct as shown in Listing 1.9 (Appendix B).

As a %transformation is compiled like a composition of strategies, the
application and use of AADL2Fiacre transformation is like every other strategy
as illustrated in Listing 1.10 (Appendix B).

A special strategy tom_StratResolve_AADL2Fiacre() is generated when
needed (in case of use of %tracelink and %resolve constructs). It replaces
all resolve objects ("virtual" ones created by the %resolve construct) by the
corresponding and therefore it resolves all links. It allows to the developer not
to take care of the application order of transformation steps.

In a pure Java approach, Tom facilities such as pattern-matching should be
replaced by lots of hand-written tests and iterators (for list-matching). Strategies
would be replaced by hand-written traversal of the source model, using loops

17 Can be found in Osate2 plugin from Ellidiss update site: http://aadl.ellidiss.fr
18 An ECore metamodel has been defined to integrate Fiacre in the TOPCASED envi-

ronment, and therefore can be found in the TOPCASED bundle.

http://aadl.ellidiss.fr

and recursivity. In addition, the developer would have to be very careful on the
instructions sequence in order not to use not yet created objects.

4 Conclusions, future work

This paper presented tools designed to transform more easily EMF models in
a general purpose language such as Java. These tools are based on the Tom
language which relies on strong formal foundations (rewriting calculus); has been
developed since year 2000; and has been used in many research and industrial
project. As the Tom language is composed of a limited set of constructs that
developers include in host languages programs, it is easy to learn and its use
allows developers to be quickly efficient. One the one hand its DSL approach is
useful to express a model transformation in an easier way than in pure Java.
On the other hand, its integration in a GPL allows to take advantage of existing
tooling and libraries. To complete this goal, Eclipse plugins for Tom and Tom-
EMF are also being developed.

A real industrial case study which is currently being developed in an avionics-
related project was also described. Our goal is to provide an efficient tool usable
in an state-of-the-art industrial context.

Tom-EMF and extensions of the Tom language are currently experiencing a
testing period. The first version of %transformation construct will be available
in the Tom 2.10 release.

These tools should be improved in many ways. For the moment, Tom mod-
els transformations tools are exclusively based on EMF. The support of multi-
modeling frameworks such as GMS19 is currently being implemented. Another
focus is the extension of %transformation construct to support multiple in-
puts. With this feature, the pattern-matching possibilities will be extended to
be able to match several patterns at the same time in an elementary transforma-
tion. The extension and the generalization of the EMF-specialized introspector
to be able to easily follow other links than containment associations in a model
is also studied. As the verification of models transformations is one of our core
concerns, the traceability of a model transformation is being investigated. The
start point of this part consists in working on the improvement of the currently
generated link meta-model; and then to apply constraints (as in OCL) on this
link meta-model to ensure that properties are verified.

Finally, this work represents a first step towards the increase safety in soft-
ware development chains through the design of new tools and the verification of
models transformations.

19 Ada modeling framework used in the P project: http://www.open-do.org/
projects/p/

http://www.open-do.org/projects/p/
http://www.open-do.org/projects/p/

References

1. Moreau, P.E., Ringeissen, C., Vittek, M.: A pattern matching compiler for multiple
target languages. In Hedin, G., ed.: Compiler Construction. Volume 2622 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (2003) 61–76

2. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: piggybacking
rewriting on java. In: Proceedings of the 18th international conference on Term
rewriting and applications. RTA’07, Berlin, Heidelberg, Springer-Verlag (2007) 36–
47

3. Jézéquel, J.M., Barais, O., Fleurey, F.: Model driven language engineering with ker-
meta. In: Proceedings of the 3rd international summer school conference on Gen-
erative and transformational techniques in software engineering III. GTTSE’09,
Berlin, Heidelberg, Springer-Verlag (2011) 201–221

4. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. 2nd edn. Addison-Wesley Professional (2009)

5. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. Software, IEEE 20(5) (2003) 42–45

6. Klint, P., van der Storm, T., Vinju, J.J.: Rascal: A domain specific language for
source code analysis and manipulation. In: SCAM, IEEE Computer Society (2009)
168–177

7. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Software and System
Modeling 9(3) (2010) 375–402

8. Kats, L.C.L., Visser, E.: The spoofax language workbench: rules for declarative
specification of languages and ides. In Cook, W.R., Clarke, S., Rinard, M.C., eds.:
OOPSLA, ACM (2010) 444–463

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1-2) (June 2008) 31–39

10. Balland, E., Moreau, P.E., Reilles, A.: Rewriting strategies in java. Electr. Notes
Theor. Comput. Sci. 219 (2008) 97–111

11. Bach, J.C., Crégut, X., Moreau, P.E., Pantel, M.: Model transformations with
tom. In: LDTA, Tallinn, Estonia, ACM (2012) To appear.

12. Feiler, P.H., Lewis, B.A., Vestal, S.: The sae architecture analysis & design lan-
guage (aadl) a standard for engineering performance critical systems. In: Computer
Aided Control System Design, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intelligent Control, 2006 IEEE.
(oct. 2006) 1206 –1211

13. Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: an Intermediate Language for Model Verification
in the Topcased Environment. In: ERTS 2008, Toulouse, France (2008)

Appendices

11

A Syntax of new Tom constructs dedicated to models
transformation

TransformationConstruct ::= ’%transformation’ TransformationName ’(’[TransformationArguments]’)’
’:’ FileName ’->’ FileName ’{’ (Definition)+ ’}’
TransformationArguments ::= SubjectName ’:’ AlgebraicType (’,’ SubjectName ’:’ AlgebraicType)*

| AlgebraicType SubjectName (’,’ AlgebraicType SubjectName)*
Definition ::= ’definition’ DefinitionName ’traversal’ Strategy ’{’ (DefinitionRule)* ’}’
DefinitionRule ::= Pattern ’->’ ’{’ BlockList ’}’

Listing 1.6: %transformation construct syntax

Many elements are note defined in this syntax block in order to have a read-
able %transformation syntax block. TransformationName, FileName, SubjectName,
AlgebraicType and DefinitionName are Identifier with self-explanatory names.
Strategy represents a Tom strategy such as ‘TopDown(MyStrategy()). Pattern
is a pattern as defined in the Tom grammar on the official Tom website. BlockList
is a block composed of both host and Tom code, as defined in the Tom grammar.

TracelinkConstruct ::= ’%tracelink’ ’(’ VarName ’:’ TypeName ’,’ BackQuoteTerm ’)’
VarName ::= Identifier
TypeName ::= Identifier

Listing 1.7: %tracelink construct syntax

ResolveConstruct ::= ’%resolve’ ’(’ VarName ’:’ TypeName ’,’ VarName ’:’ TypeName ’)’
VarName ::= Identifier
TypeName ::= Identifier

Listing 1.8: %resolve construct syntax

In these two syntax blocks, VarName and TypeName are Identifiers repre-
senting variable and type names.

B Implementation on the first step of AADL2Fiacre
transformation

1 %transformation AADL2Fiacre() with(aadl2.ecore) to(fiacre.ecore) {
2 definition DataTrans traversal ‘TopDown(DataTrans) {
3 dt@DataImplementation[name=name,ownedDataSubcomponent=dataSubc] −> {
4 TypeDeclaration typeDecl =
5 ‘TypeDeclaration(name,RecordType_fiacre(RecordTypeLabelEList()));
6 translator .fiacrePg.getDeclarations().add(typeDecl);
7 EList<RecordTypeLabel> fields = ((RecordType_fiacre)typeDecl.getValue()).getFields();
8 %match(‘dataSubc) {
9 DataSubcomponentEList(_∗,child@DataSubcomponent[name=childName,

10 dataSubcomponentType=dataSubcT],_∗) −> {
11 String pkgTypeName = ((AadlPackage)‘dataSubcT.getElementRoot()).getName();
12 String childTypeName = ‘dataSubcT.getName();
13 RecordTypeLabel rtl = ‘RecordTypeLabel(
14 childName,
15 TypeAccess(getTypeDeclaration(

16 translator .fiacreRecordTypeList,
17 pkgTypeName,
18 childTypeName))
19);
20 fields .add(rtl);
21 }
22 }
23 typeDecl.setValue(‘RecordType_fiacre(fields));
24 translator .fiacreRecordTypeList.put(‘name, typeDecl);
25 }
26 }
27 definition ThreadTrans traversal ‘TopDown(ThreadTrans) { <Tom+Java code> }
28 definition ThreadImplTrans traversal ‘TopDown(ThreadImplTrans) { <Tom+Java code> }
29 definition BehaviorAnnexTrans traversal ‘TopDown(BehaviorAnnexTrans) { <Tom+Java code> }
30 definition SystemTrans traversal ‘TopDown(SystemTrans) { <Tom+Java code> }
31 definition ProcessTrans traversal ‘TopDown(ProcessTrans) { <Tom+Java code> }
32 }

Listing 1.9: AADL2Fiacre implementation

1 public static void main(String[] args) {
2 ...
3 Strategy transformer = ‘AAdL2Fiacre();
4 transformer.visit(source, new EcoreContainmentIntrospector());
5 ‘TopDown(tom_StratResolve_AADL2Fiacre()).visit(res, new EcoreContainmentIntrospector());
6 ...
7 }

Listing 1.10: Use and call of a transformation

	Tom-based tools to transform EMF models in avionics context

