
Model Transformations with Tom

Jean-Christophe Bach
Inria, 54600, France

Université de Lorraine, LORIA,
54500, France

CNRS, LORIA, 54500, France
jeanchristophe.bach@inria.fr

Xavier Crégut
INPT-IRIT

Université de Toulouse
Toulouse, France

xavier.cregut@enseeiht.fr

Pierre-Etienne Moreau
Inria, 54600, France

Université de Lorraine, LORIA,
54500, France

CNRS, LORIA, 54500, France
moreau@loria.fr

Marc Pantel
INPT-IRIT

Université de Toulouse
Toulouse, France

marc.pantel@enseeiht.fr

ABSTRACT
Model Driven Engineering (MDE) advocates the use of Model
Transformations (MT) in order to automate repetitive de-
velopment tasks. Many different model transformation lan-
guages have been proposed with a significant tool develop-
ment cost as common language elements like expressions,
statements, . . . must be built from scratch for each new lan-
guage development tools. The Tom language is a shallow
extension of Java tailored to describe and implement trans-
formations of tree based data-structures. A key feature of
Tom allows to map any Java data-structure to tree based
data abstractions that can then be accessed by powerful
non-linear, associative, commutative pattern matching. In
this paper, we present how this approach can be used in or-
der to develop model transformations, in particular relying
on Eclipse Modeling Framework (EMF) based metamodeling
facilities. This allows to provide a transformation language
at a low cost both for the development of its tools and the
training of its users.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Programming Techniques—
Languages,Methodologies,Tools; D.2.11 [Software Engineer-
ing]: Software Architectures—Languages; D.3 [Programming
Languages]: Miscellaneous

General Terms
Algorithms, Languages

Keywords
model transformation, language, Tom, Java, EMF, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2012, March 31 - April 01 2012, Tallinn, Estonia
Copyright 2012 ACM 978-1-4503-1536-4/12/03 ...$15.00.

structure

1. INTRODUCTION
One of the key success of MDE comes from its ability to

abstract complex problems and to provide a standard way
to model them. For a given class of problems, the specifica-
tion of the modeling language is called a metamodel, and for
each specific problem, the abstract representation is called
a model of the problem that conforms to its metamodel.
There may exist several approaches to solve a problem, each
of them generally consists in presenting the abstract prob-
lem in such a way that a specialized tool or solver can be
applied. One of the main activity in MDE is thus to trans-
form problems, i.e. models expressed in a given metamodel,
into problems or views expressed in another representation,
i.e. in another metamodel. The transformation of models is
thus at the core of MDE applications.

The notion of metamodel has been formalized by the OMG1

in the Meta Object Facility (MOF) standard2 as a subset of
the UML class diagram. Intuitively, a metamodel is com-
posed of a set of meta-classes that contain attributes and
operations like usual object oriented classes. The meta-
classes can be linked by inheritance, and by meta-relations,
either association or composition with an associated arity.
Each model must conform to such a metamodel, i.e. it is
a set of elements, valued element attributes and relations
between elements conforming to their meta-definitions. A
model transformation is a program that takes a model as
input and returns a new model, possibly conforming to the
same or another metamodel.

This principle is quite simple but, as usual in software en-
gineering, expressing sophisticated model transformations in
an executable formalism can be quite complex. There are
at least two main approaches to describe a model transfor-
mation:

• either a model transformation is expressed as a se-
quence of elementary steps that build the target model
step by step (instantiating new elements, assigning at-
tributes, creating links, etc.) using information stored

1Object Management Group, http://www.omg.org
2http://www.omg.org/mof

http://www.omg.org
http://www.omg.org/mof

in the source model. This approach, usually called op-
erational, is clearly imperative, as the target model is
modified in each step. It can either be implemented us-
ing dedicated languages like Kermeta, QVT-Operational,
. . . or using reflexive libraries or generated code such
as EMF [19] inside general purpose programming lan-
guages such as Java;

• or a model transformation can be defined as the re-
lations that must exist between the source and the
target models at the end of the transformation. This
abstract presentation, sometimes called declarative or
relational, is not directly executable, but, under some
restriction, can be either translated to an operational
transformation, or to a global function that takes in
a step the whole source model as parameter and pro-
duces the whole target model as result (built for ex-
ample with categorical pushout operators for graph
rewriting based transformation languages).

Some authors [18] even consider a third architectural ap-
proach based on the introduction of an intermediate repre-
sentation such as XML or any textual concrete syntax. The
model transformation can then be described using a lan-
guage such as XSLT or any language transformation toolset
like Stratego/XT, ASF+SDF, Rascal, Spoofax,

Transformation language examples relying on both ap-
proaches will be presented later on in Section 5. However,
the development and the use of new languages is costly
as many common features such as expressions and state-
ments must be implemented from scratch. Furthermore,
users must learn how to benefit from the new capabilities
provided by the languages. The MDE community is thus
balancing between the development of new expressive lan-
guages and the use of libraries in general purpose program-
ming languages. But the tools for dedicated languages (ed-
itors, interpreters, compilers, . . .) hardly ever reach the
quality of general purpose languages ones; and the use of
libraries that allows to manipulate models in general pur-
pose languages either through reflexion or code generation
only provide the operational approach and their use in de-
velopment is quite costly. In the reflexive approach, all the
type verification is done at runtime as the elements name
are handled as strings. The verification activities for trans-
formations are thus very costly. In the code generation ap-
proach, the generated code usually provides static typing but
very little model querying facilities. Thus the programming
cost is quite heavy as the user must either add handwritten
specific queries to ease the traversal of the metamodel, or
do the explicit traversal each time a data is needed.

In order to bridge the gap between these two common ap-
proaches, we consider in the following the Tom language [12,
3], which lies halfway between them. On the one hand Tom
is an extension of Java where every correct Java program is
a correct Tom program. Therefore, in Tom it is possible to
follow an operational approach and perform a model trans-
formation using classical object oriented programming and
EMF library. On the other hand, Tom adds declarative fea-
tures to Java. An abstract term based representation can
be associated to any data structure, even the most complex
ones using a programmer provided, or automatically gener-
ated mapping. Sophisticated non linear associative commu-
tative pattern matching and rule based programming can be
used to define the transformations steps, without specifying

in which order they are taken. Then, a specific construct
called strategy is used to express the control and to spec-
ify how the transformation rules should be applied. All the
constructs provided by Tom are then translated into pure
Java relying on model management libraries like EMF. Thus,
the end user can benefit from both classical programming,
and model transformation technologies (operational and re-
lational), without major efficiency penalty and without the
additional cost of learning a completely new language. A
third advantage of the proposed approach is that the lan-
guage developers do not need to build a completely new
language: they can rely on most existing Java tools.

In this paper, we present a technique to transform models
with Tom/Java. It can be used for any model transforma-
tions as long as the metamodels can be expressed with the
ECore formalism. This technique constitutes the first step
towards a high-level extension of the Tom language. Sec-
tion 2 introduces a practical example used in the next sec-
tions. The reader should note that the presented approach
is general and is not restricted to the considered use case
example; Section 3 presents the main constructs of the Tom
language, tools developed to interface with EMF technology
and a simple version of a model transformation; Section 4
explains how we implemented the use case in Tom and shows
a generalized approach for writing models transformations
with Tom; Section 5 summarizes existing model transforma-
tion languages, their advantages and drawbacks and how our
proposal relates to them; Section 6 concludes and presents
current and further works.

2. FROM PROCESS MODELS TO PETRI
NETS

In the following we rely on a case study introduced by
Combemale et al. in [7] This example is both simple and
rich enough to illustrate problems that may occur in the
general case when considering more complex model trans-
formations. It consists in transforming process described in
the SimplePDL3 formalism (Figure 1) into the Petri net for-
malism (Figure 2). This transformation may be used to ver-
ify properties on a process model, thanks to model-checkers
based on Petri nets [6]. This verification aspect is not de-
tailled in this paper that focuses on model transformation
technologies.

Meta-models
The SimplePDL metamodel (Figure 1) defines the concept
of Process composed of ProcessElements. Each process el-
ement can be either a WorkDefinition or a WorkSequence.
Work definitions are the activities that must be performed
during a process. A work sequence defines a dependency
relationship between two work definitions. The second work
definition (successor) can be started — or finished — only
when the first one (predecessor) is already started — or fin-
ished — according to the value of the attribute linkType
(four possible values). Finally, a work definition can be de-
fined as a nested process (process reference), allowing the
definition of hierarchal processes.

3Simple Process Description Language

Process

name : String

ProcessElement

WorkDefinition

name : String

WorkSequence

linkType : WorkSequenceType

<<enumeration>>
WorkSequenceType

startToStart
finishToStart
startToFinish
finishToFinish

processElements

0..*

process

0..1

from

0..1

parent

1

successor
1 0..*

linksToPredecessors

predecessor
1 0..*

linksToSuccessors

Figure 1: SimplePDL metamodel

The Petri net metamodel is shown on Figure 2. A PetriNet
is composed of Nodes that denote either a Place or a Tran-
sition. Nodes are linked by Arc. Arcs can be normal ones
or read-arcs. An arc specifies the number of tokens (weight)
consumed in the source place or produced in the target one
when a transition is fired. A read-arc (second value in Ar-
cKind enumeration) only checks tokens availability without
removing them. A Petri net marking is defined by the num-
ber of tokens contained in each place (marking).

PetriNet

name : String

Arc

kind : ArcKind
weight : Int

Node

name : String

Place

marking : Int

Transition

<<enumeration>>
ArcKind

normal
read arc

nodes

0..* net

1

arcs

0..*

net

1

outgoings

0..*

1

source

incomings

0..*

1

target

Figure 2: PetriNet metamodel

Example of transformation

A B

C D

s2s

f2s

child:

root:

Figure 3: SimplePDL model

The root process (Fig-
ure 3) is composed of
two work definitions,
A and B linked by
a start2start work se-
quence, meaning that B

can only start after A

is started. B is itself
described by a process
(child) composed of two activities, C and D linked by a fin-
ish2start dependency. Thus, C has to be finished in order to
start D.
The transformation translates each process and work defi-
nition into a dedicated pre-defined Petri net template, and
each work sequence into an arc. In a second step, when pro-
cesses and work definitions are translated, arcs are generated
to encode the synchronisation between the processes and
their work definitions. A graphical representation is given
below (Figure 4), where synchronisation is represented by
dashed arcs, work sequences by thick green annotated arcs,
places by red circles and transitions by blue squares. Details
about elements composing this final Petri net are described
in Section 4.

C

pfinished

D

tstart

f2s

pready
Pchild

pfinished

B

tstart

tfinish

A

pstarted

s2s

Proot

Figure 4: Complete Process described in the use case

3. MODEL TRANSFORMATION IN JAVA
WITH PATTERN-MATCHING

To implement a model transformation such as the one
sketched previously there are two main alternatives: either
use a dedicated language (see Section 5), or use a general
purpose language such as Java and associated model man-
agement libraries. Among the advantages of using Java we
can mention efficiency, portability, and the fact that Java is
a de facto industrial standard (well-known by engineers, in-
tegrated in existing processes, etc.). A main disadvantage is
that Java is a low level, imperative language with respect to
model transformations that is not well tailored for writing
these kind of programs: there is no good support to query
input models usually leading to complex code to retrieve a
given piece of information and the declarative approach to
model transformation cannot be expressed.

In the following we consider an extension of Java named
Tom [3], whose goal is to make simpler the implementation of
programs that manipulate tree-based data structures such as
abstract syntax trees or XML documents for instance. The
reader is invited to refer to http://tom.loria.fr for a more
complete presentation.

Basically, Tom offers two new constructs: %match, a
generalized switch-case construct that allows to discriminate
upon objects instead of just plain data-types such as inte-
gers, and the ‘ (backquote construct) which simplifies the
creation of objects.

Pattern matching
The %match statement is similar to a switch-case con-
struct. It is composed of a list of conditions-actions: when
a condition is satisfied, the corresponding action is fired.
The main difference comes from the expressive power of the
conditions: they are called patterns and correspond to trees
that may contain variables. In the following we describe the
transformation that associates a Petri net to a Process node
of the input model:

1 public static void transformProcess(EObject subject, PetriNet pn) {
2 %match(subject) {
3 Process[name=n,from=src,processElements=pel] −> {
4 Node p ready = ‘Place(n + ” p ready”, pn);
5 Node t start = ‘Transition(n + ” t start ”, pn);
6 ...
7 ‘Arc(t start , p ready, pn, normal(), 1);
8 /∗ creation of other Nodes and Arcs∗/
9 ...

10 %match(pel) {
11 ProcessElementEList(∗,pe, ∗) −> {
12 transformProcessElement(‘pe, pn);
13 }
14 }}}
15 };

http://tom.loria.fr

Given a subject, the pattern Process[name=n,from=src,-

processElements=pel] at line 3 checks that the subject cor-
responds to a Process node. When it is the case, the vari-
ables n, src, and pel are initialized with the objects refer-
enced by the attributes name, from, and processElements.
In the general case, a pattern may contain nested patterns
which add new constraints on the shape of sub-terms. Con-
junctions (&&) and disjunctions (||) of patterns as well as
multiple occurrences of a given variable (non linear pat-
terns) may also be considered. The action part delimited
by -> { ... } may contain Java statements but also Tom
statements. For instance, line 4 combines a Java assignment
and a Tom backquote construct which builds a Place (i.e. a
Petri net node of the output model). The ‘Arc(...) expres-
sion at line 7 updates the Petri net model pn by adding an
Arc between the place p_ready and the transition t_start.

The last statement (from line 10 to 12) is interesting be-
cause it shows that nested %match constructs are allowed.
It also illustrates the use of list-matching, also known as as-
sociative matching with neutral element. In this example,
the pattern ProcessElementEList(_*,pe,_*) behaves like
an iterator over pel: the action part is executed for each
value of pe ∈ pel.

The definition of the constructors Process and Process-

ElementEList are not builtin in the language, they are de-
rived from the metamodel given in Figure 1 relying on the
EMF Java mapping. Thus, the syntax of patterns strongly
depends on the considered metamodel.

Algebraic views
A %match construct depends on two different data-structures:
the subject being matched (the subject is a reference to a
plain Java object) and the pattern which is expressed in
an algebraic language, namely Tom. In order to compile
the pattern matching constructs, the Tom compiler needs to
know the relationship between the implementation of objects
(Java classes), and the algebraic view (pattern sorts and con-
structors). For this purpose, Tom offers an algebraic view
definition formalism composed of two constructs: %type-
term and %op. The %typeterm, exemplified below, es-
tablishes a relation between the implementation data-type
(simplepdl.Process) and the algebraic sort (Process):

1 %typeterm Process {
2 implement { simplepdl.Process }
3 }

The following %op constructs explains to the Tom com-
piler how a Java Process object can be viewed as an alge-
braic constructor, namely, Process:

1 %op Process Process(name:String, from:WorkDefinition,
2 processElements:ProcessElementEList) {
3 is fsym(t) { t instanceof simplepdl.Process }
4 get slot(name, t) { ... }
5 get slot(from, t) { ... }
6 get slot(processElements, t) { ... }
7 make(name, from ,processElements) {
8 constructProcess(
9 SimplepdlFactory.eINSTANCE.create(

10 SimplepdlPackage.eINSTANCE.getEClassifier(”Process”)),
11 new Object[]{ name, from, processElements })
12 } }

The algebraic constructor Process has three arguments, re-
spectively of sort String, WorkDefinition, and ProcessE-

lementElist, and its codomain is the algebraic sort Process
defined above. The construct is fsym at line 2 is used by

the pattern matching algorithm to check that the current
constructor (i.e. Process in this example) is the root of
the algebraic representation of the Java object. It is also
needed for code generation. The Java code corresponds to
the implementation of this predicate. Similarly, constructs
get slot (lines 3, 4 and 5) and make (line 6) define how
to retrieve a given field in the data-structure, and how to
build an instance of the considered constructor. This latter
construct is used by the ‘ (backquote) construct to build
terms.

For more details about the design of the Tom language,
the reader is invited to refer to [12] and [3].

Towards an implementation of the transformation..
Assuming that an algebraic view (i.e. a mapping) is de-

fined for each element of the input and output metamod-
els, the considered model transformation, from SimplePDL
to Petri nets, can be easily implemented using two passes
over the input model: in a first pass, all WorkDefinitions
are translated into Petri net templates, recursively calling
transformProcess if necessary (introduced previously). In
a second pass, the WorkSequences are translated into arcs
according to WorkSequenceType. The resulting Petri net is
a Tom term which can be used as any other term in a pro-
gram. Alternately, it can be serialized by using EMF to have
a standard model file usable by other tools.

This approach has a main drawback: it supposes that the
transformation can be described in such a way that when
building a link in the output model, the nodes it refers to
have been generated in an earlier step. In the general case,
this is not always possible, or this may imply an arbitrary
large number of passes, which is not convenient nor efficient.
A solution to this problem will be discussed and presented
in Section 4.

In the following we present an automatic way to generate
a mapping from a given metamodel.

Generator of algebraic views
EMF allows to generate Java code corresponding to a meta-
model in a jar archive. We have designed a tool called Tom-
EMF which uses reflection to load and inspect the classes
contained in the jar archive. From theses classes, Tom-
EMF can automatically retrieve the EClassifier (EClass and
EDataType) and EStructuralFeatures in order to generate
the %typeterm and %op constructs introduced above. For
instance, when applying Tom-EMF on SimplePDL generated
jar archive, the Process class produces a %typeterm Process

and a %op Process.
When a reference indicates that an element may have

multiple instances (for instance, Figure 1 shows a process-

Elements 0..* relation which means that a Process can
be composed of many ProcessElements), the tool gener-
ates list-matching operators such as ProcessElementEList,
which are variadic, and whose matching is performed mod-
ulo associativity and neutral element.

Implementation design..
The generator could have taken an .ecore file as input

instead of a .jar file. The tool implementation would have
been different, since we could not have used directly Java
reflection. We would have used EMF mechanism to load
ECore metamodels and replaced every use of classical Java

reflection by EMF calls. We plan to implement this generator
using Tom-EMF itself.

We made the choice to generate mappings without using
a full EMF reflection in order to preserve static typing, and
to avoid many dynamic casts (and thus to be more efficient
and to avoid potential runtime errors). A drawback is that
Java files and Tom mappings have to be generated before
any use (this adds an extra generation step using Eclipse).

Changes in EMF specification would not have any conse-
quences on Tom language and the Tom compiler, but it may
have an impact on the Tom-EMF mapping generator. In
practice, this is not a big issue as EMF is based on the MOF
standard.

4. A GENERALIZED APPROACH FOR MO-
DEL TRANSFORMATIONS USING STRA-
TEGIES

In the previous section we have shown how pattern match-
ing capabilities offered by Tom can be used in conjunction
with Java classes generated by EMF. The generation of map-
pings being automatic, this provides a quite simple frame-
work that can be used to define model transformations.

However, a main drawback is the need to take care of the
order in which transformation steps have to be performed,
specially when the transformation has to reference elements
not yet created or completed in the output model.

In the following we present a generalized two-steps ap-
proach where we separate the notion of transformation from
the control of these transformations. In a first step we spec-
ify in a declarative way how each specific sub-part of the
input model should be transformed. Each transformation
is applied separately, leading to a model where the vari-
ous sub-parts are not connected: they contain nodes, called
resolve nodes, which describe the intension of being con-
nected to another sub-part when it will become available.
This approach is strongly inspired by the resolve constructs
of ATL [9] and QVT [14].

In a second step, all the resolve nodes are traversed and
replaced by links, to build the final output model.

Generic traversal strategies
In addition to ‘ (backquote) and %match constructs, Tom
offers a third construct, %strategy, which encodes the no-
tion of elementary transformation rule. For instance, let us
consider the following snippet of code:

1 %strategy Process2PetriNet() extends Identity() {
2 visit Process {
3 Process[name=name,from=from] −> { <Host+Tom code> }
4 }
5 }
6 ...
7 ‘TopDown(Process2PetriNet()).visit(root process);
8 ...

This defines an elementary transformation called Pro-

cess2PetriNet whose default behavior is the Identity, mean-
ing that no transformation occurs when the considered rule
cannot be applied4. The visit Process constructs is a first
filter which specifies the sort of objects (Process in this
case) on which the rule should be applied. Then a classical
Tom-rule composed of a pattern and an action is defined.

4This is in contrast to Fail which specifies that the trans-
formation fails when the rule cannot be applied.

The main particularity of a %strategy construct is that
it is not automatically fired. Its application should be con-
trolled by a strategy. For instance, the TopDown(Process2-

PetriNet()) expression means that the rule Process2Petri-
Net() is applied in a top-down way on the term root_process.
Tom offers several primitive strategies, such as Identity,
Fail, One, All, Choice and Sequence, which can be com-
bined, even recursively, to build more powerful strategies
such as Repeat, TopDown, or Innermost for instance.
For more precise information about strategies, the reader
can refer to [4] and to the dedicated page5 on Tom project
website.

Decomposition of the transformation
To address the issues mentioned at the beginning of this sec-
tion, we propose an approach where a model transformation
is specified in terms of elementary transformations which are
parts of the whole transformation. Each elementary trans-
formation being implemented by an elementary strategy. In
this approach, the order of application of the transforma-
tions is not defined in the transformation itself, therefore,
when an elementary transformation has to reference an el-
ement which is not yet created or completed in the output
model (e.g. elements which should be created in another
elementary transformation), we have to create a temporary
object called resolve object, in reference to the resolveTemp
construct of ATL [9] (see also resolveIn in QVT [14]). Each
resolve object is stored in a two level hash-map which maps
each source element we are processing (WorkDefinition in
our use case) to another hash-map. This latter map connects
a name (a label such as "p_ready" for example) to a target
element which just has been created (the place referenced
by the variable p_ready in our example).

Once each atomic transformation has been applied, the
result is composed of temporary resolve objects and partial
results which need to be reconnected. Thanks to the table,
resolve objects can be replaced by target objects in corre-
sponding partial results, and we obtain the final result of
the transformation.

Elementary transformations.
In our use case, we consider three atomic transformations:

Process2PetriNet, WorkDefinition2PetriNet, and Work-

Sequence2PetriNet). Each of them is implemented by a
%strategy construct.

The first one, Process2PetriNet, creates the Petri net
that corresponds to the image of a Process. This Petri net
is composed of three places (pready, prunning and pfinished),
two transitions (tstart and tfinish) and four arcs. During
the transformation, each created element (i.e. transitions
and places) is stored in a hash-map (map), which is itself
associated to the process being transformed (p is a variable
assigned to the process which is matched). The last part
of the strategy creates resolve objects: they encode the link
that should be created when all parts of the model are avail-
able. In our running example, the resolve object is a refer-
ence to the transition tstart, resulting of the transformation
of WorkDefinition, that will be connected via an arc to the
place pready of the current generated Petri net (see Figure 4
to get the “big picture”). Figure 5 shows the resulting Petri

5http://tom.loria.fr/wiki/index.php5/
Documentation:Strategies

http://tom.loria.fr/wiki/index.php5/Documentation:Strategies
http://tom.loria.fr/wiki/index.php5/Documentation:Strategies

net of Process2PetriNet transformation (dashed nodes are
resolve nodes).

pready

source

tstart

prunning

tfinish

pfinished

target

Figure 5: Petri net template for a Process

Figure 6 sketches the implementation:

1 %strategy Process2PetriNet(pn:PetriNet,table:HashMap)
2 extends Identity() {
3 visit Process {
4 p@Process[name=name,from=from] −> {
5 Node p ready = ‘Place(name + ” ready”, pn);
6 Node t start = ‘Transition(name + ” start”);
7 ... // creation of p running, t finish , and p finished
8 ‘Arc(t start , p ready, pn,normal());
9 ... // creation of the 3 remainings arcs

10 HashMap map = new HashMap();
11 map.put(”p ready”, p ready);
12 ... // store p running, p finished, t start , and t finish
13 table .put(‘p, map);
14 //‘from is the WorkDefinition which contains the current
15 //Process, in case of hierarchical description
16 if (‘ from!=null) {
17 Transition source =
18 new ResolveWorkDefinitionTransition(‘from, ”t start”);
19 ‘Arc(p ready, source, pn, normal());
20 Transition target =
21 new ResolveWorkDefinitionTransition(‘from, ”t finish”);
22 ‘Arc(target, p finished , pn, read arc ());
23 }
24 }
25 }
26 }

Figure 6: Process2PetriNet strategy

The two other atomic transformations implemented by
WorkDefinition2PetriNet and WorkSequence2PetriNet stra-
tegies are based on the same principle, we just describe them
without giving their corresponding code.

The WorkDefinition2PetriNet strategy creates all Petri
net elements which define the image WorkDefinition. This
Petri net is composed of four places (pready, prunning, pstarted
and pfinished), two transitions (tstart and tfinish), and five
arcs (Figure 7). The only difference between a process rep-
resentation and a work definition is the fact that there is
an additional place pstarted after the tstart transition. The
last part of the strategy creates resolve objects representing
nodes of the parent Process to which the WorkDefinition is
connected.

pready

parentstart

tstart

prunning pstarted

tfinish

pfinished

parentfinish

Figure 7: Petri net template for a WorkDefinition

A work sequence between two work definitions is simply
represented by a read-arc between two activities (Figure 8).
A read-arc controls that a transition is enabled (it checks
if a token is present without removing it). Therefore, the
WorkSequence2PetriNet strategy consists in creating an Arc
whose source and target are both resolve nodes.

source

target

Figure 8: Petri net template a WorkSequence

Controlling application of transformations.
We have described three elementary transformations using

strategies. The order in which the transformations should
be applied is not encoded in the transformations themselves.
Indeed, the order is not relevant and the three transforma-
tions can be applied in any order. In Figure 9 we give a
possible strategy: first we transform a WorkSequence into
arcs, and then we transform Process and WorkDefinition.
This order has been chosen arbitrarily and could be different
without any consequences.

1 public static void main(String[] args) {
2 ...
3 // transformer is a composition of all atomic transformations
4 Strategy transformer =
5 ‘Sequence(TopDown(WorkSequence2PetriNet(pn)),
6 TopDown(Process2PetriNet(pn)),
7 TopDown(WorkDefinition2PetriNet(pn)));
8 // call of transformer on the root process
9 transformer.visit(p root);

10 ...

Figure 9: Composition of builtin and custom strategies

Connecting intermediate results.
At this stage of the presentation we have shown how a

complex model transformation can be described by several
independent transformations, encoded by elementary strate-
gies. To achieve this goal we have introduced temporary re-
solve nodes that should be eliminated and replaced by cor-
responding links in the resulting model.

Since implementations of models are statically typed (thanks
to EMF) we had to introduce one type of resolve object per
type. For example, to implement a resolve node that cor-
responds to a place in a WorkDefinition, we consider the
following class:

1 private static class ResolveWorkDefinitionPlace extends Place {
2 public String name;
3 public WorkDefinition o;
4 public ResolveWorkDefinitionPlace(WorkDefinition o, String name) {
5 this.name = name;
6 this.o = o;
7 }
8 }

Let us now consider a simple PDL process composed by
two WorkDefinition and a WorkSequence. Applying the
transformer strategy leads to four unconnected Petri nets,
as illustrated (Figure 10). In Figure 11 we introduce a meta-
strategy named Resolve, whose goal is to replace all resolve
objects by the corresponding image, which are stored in the
two-level hash-map. The strategy Resolve is applied in a
top-down way on the resulting unconnected Petri nets that
the elementary transformations produced. As a result, every
Node is visited and each ResolveWorkDefinition node for
instance is replaced by the node stored in the table.

Figure 10: ”Unresolved” Petri net

1 %strategy Resolve(translator:SimplePDLToPetri) extends Identity() {
2 visit Place {
3 ResolveWorkDefinitionPlace[o=o,name=name] −> {
4 Place res = (Place) translator . table .get(‘o).get(‘name);
5 return res;
6 }
7 }
8 visit Transition {
9 ResolveWorkDefinitionTransition[o=o,name=name] −> {

10 return (Transition) translator . table .get(‘o).get(‘name);
11 }
12 ResolveProcessTransition[o=o,name=name] −> {
13 return (Transition) translator . table .get(‘o).get(‘name);
14 }
15 }
16 }

Figure 11: Resolve strategy

In the current implementation, the strategy Resolve should

be manually coded by the user. We are currently experi-
menting an extension of the proposed approach where the
Resolve strategy would be automatically inferred and gener-
ated from the elementary transformations. This is discussed
in Section 6.

5. RELATED WORK
This part focuses on full blown languages and experiments

that have been applied on real case studies and have been
available for several years either in the academic or industrial
worlds.

Many languages have been designed in order to ease the
writing of model transformations using model manipulation
operators. These languages allow to access model contents
using either graph pattern matching or object query lan-
guages usually derived from OCL. One of the differences of
our approach is that instead of designing a whole new lan-
guage to transform models, we use an efficient language re-
lying on strong theoretical basis and designed to be used
with general purpose languages.

The Object Management Group (OMG) has defined the
Query View Transformation standard (QVT) to provide mo-
del transformation technologies for the Model Driven Archi-
tecture (MDA). Modeling languages are defined using MOF
and are manipulated using OCL. The QVT standard pro-
poses both the relational and operational approaches. The
main difference is that operational ones require to describe
the control as part of the transformation whereas it is han-
dled by the execution engine for relational ones. However,
the current implementations of the standard usually restrict
themselves to a single one. In this paper we focus on imple-
mentation of the standard in the Eclipse world. The ATL
language has been designed during the standardization pro-
cess of QVT [9]. It does not rely on the QVT concrete
syntax but implements most of the operational and part
of the relational approaches. Medini-QVT-Relational6 imple-
ments the relational part of the standard whereas the Eclipse
M2M QVT-Operational7 implements the operational part of
the standard. The relational approach consists in defining
rules that map target elements and source elements. When
the transformation is applied, the execution engine matches
rules according to the source model and run them in the right
order to avoid dangling references to not yet initialized tar-
get elements. Tom’s strategies corresponds to rules and the
order of rule application is defined by meta-strategies (and
thus should be, at the moment, defined by the programmer).

Several languages that follow the operational approach
without implementing the QVT standards are available in
the EMF world. Kermeta8 allows to implement methods in
meta-classes [13]. Model transformations are thus expressed
as methods defined on the meta-classes. In order to avoid
polluting the metamodels, Kermeta allows to extend meta-
classes using aspect technologies. The Epsilon Transforma-
tion Language (ETL) [11] relies on a core common language
that is used in many different tools in the Epsilon9 toolbox.
The XTend10 language follows a similar approach. In op-
erational approaches, programmers have full control on the

6http://projects.ikv.de/qvt/
7http://www.eclipse.org/m2m/
8http://www.kermeta.org/
9http://www.eclipse.org/gmt/epsilon/

10http://www.eclipse.org/Xtext/#xtend2

http://projects.ikv.de/qvt/
http://www.eclipse.org/m2m/
http://www.kermeta.org/
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/Xtext/#xtend2

transformation but have to deal with the mapping between
source and target elements, dangling references, etc. Tom’s
meta-strategies allow to separate the construction of parts of
the target model (often described as functions in operational
approach) and the sequencing of theses construction.

In the same spirit as Tom, term rewriting tools can be
adapted in order to implement model transformations. Sev-
eral experiments with various encodings of models have been
conducted and led to some methods for using existing lan-
guages or to new toolsets. The Maude language is based on
term equational rewriting systems. It provides object ori-
ented facilities that can be used to implement metamodels
and models. Its use has been experimented by several re-
search teams [5, 16, 15] and implemented for example in the
Moment11 project.

Term rewriting has been used for the last 30 years for
implemented program transformations. ASF+SDF, Strate-
go/XT, Elan and Tom have been available for a long time
and applied on real world case studies. The main issue in
order to use them for model transformation is to switch from
terms to graphs. The Spoofax12 toolset is based on Strate-
go/XT [10, 8].

Graph rewriting for model transformations has been ex-
perimented in the last 20 years [20, 17] using various cate-
gorical encodings like single and double pushout and specifi-
cation formalism like graph types or triple graph grammars.
Many tools have been implemented. The following ones
are currently available in the Eclipse world. The Moflon13

toolset relies on triple graph grammar in order to implement
model transformations [1]. The Henshin14 project is the fol-
lowup of many experiments [2] in Eclipse based on the AGG
toolset. The main issue of graph rewriting is that it relies
on quite costly synthesis technologies in order to build the
transformation function from the elementary graph rewrit-
ing rules and the scalability of the categorical technologies
is still to be experimented.

In the same spirit as the Tom shallow language extension
approach, MPS15, the Meta Programming System, relies on
lightweight language extensions that are translated to the
core language, currently Java. MPS provides an integrated
tool for the definition of languages extensions. It could thus
be used for Tom implementation. But, it does not provide
currently model transformation extension to Java. Tom also
relies on state of the art term rewriting technologies and es-
pecially efficient term management and pattern matching.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented the Tom programming

language and we have showed how pattern matching and
algebraic views can be used to encode model transformations
in a more abstract way than in pure Java, using EMF.

In a second part, we have introduced the notion of strat-
egy, and we have showed how they can be used to encode
elementary transformations, where the notion of scheduling
is no longer part of the transformation itself.

To achieve this result, we have introduced intermediate

11http://www.cs.le.ac.uk/people/aboronat/tools/
moment2/

12http://strategoxt.org/Spoofax
13http://www.moflon.org/
14http://www.eclipse.org/modeling/emft/henshin/
15http://www.jetbrains.com/mps/

QVT derived resolve objects and a two-level hash-map that
stores them. Then, we have showed how they can be re-
placed by links of the model, using an elegant TopDown(Resolve())
meta-strategy.

What we have presented is a first step towards a high-level
language integrated into Java. The method we presented can
be used to specify any model transformation between any
two different models. Our next objective is to introduce a
higher-level construct %transformation which automates
the generation of most of the code presented previously: ele-
mentary strategies, resolve objects classes, and the Resolve

meta-strategy can be automatically generated.
This new construct will be composed of model transfor-

mation rules, and each rule would be compiled as a strategy.
A developer will only have to write the transformation itself
without having to take care of resolve objects, the two-level
hash-map, as well as the Resolve strategy. All the needed
information will be encoded in the transformation, using a
domain specific syntax dedicated to the transformation of
models. The goal is to simplify the writing of models trans-
formations in the Java world.

The second part of incoming work is the extension of the
strategy language to offer the possibility to create parame-
trized strategies. Parameter could be the type of link the
transformation developer wants to follow. It would make it
more flexible.

A third part of future work will be the extension of the
mapping generator itself: for the moment, it is EMF-based,
but we could generalize it to handle other technologies.

Once Tom language will be extended, we will be able to
express complex transformations in Java in an easy way.
Then we will be able to build complete execution traces to
verify models transformations. With those traces, it will be
possible to reconstruct the transformations chain to point
a potential problem (for example, given by the results of a
model-checker).

7. REFERENCES
[1] C. Amelunxen, A. Königs, T. Rötschke, and

A. Schürr. Moflon: A standard-compliant
metamodeling framework with graph transformations.
In A. Rensink and J. Warmer, editors, ECMDA-FA,
volume 4066 of Lecture Notes in Computer Science,
pages 361–375. Springer, 2006.

[2] T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer. Henshin: Advanced concepts and tools
for in-place emf model transformations. In D. C.
Petriu, N. Rouquette, and Ø. Haugen, editors,
MoDELS (1), volume 6394 of Lecture Notes in
Computer Science, pages 121–135. Springer, 2010.

[3] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and
A. Reilles. Tom: piggybacking rewriting on java. In
Proceedings of the 18th international conference on
Term rewriting and applications, RTA’07, pages
36–47, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] E. Balland, P.-E. Moreau, and A. Reilles. Rewriting
strategies in java. Electr. Notes Theor. Comput. Sci.,
219:97–111, 2008.

[5] A. Boronat and J. Meseguer. Moment2: Emf model
transformations in maude. In A. Vallecillo and
G. Sagardui, editors, JISBD, pages 178–179, 2009.

[6] B. Combemale, X. Crégut, P.-L. Garoche, and
X. Thirioux. Essay on Semantics Definition in MDE.

http://www.cs.le.ac.uk/people/aboronat/tools/moment2/
http://www.cs.le.ac.uk/people/aboronat/tools/moment2/
http://strategoxt.org/Spoofax
http://www.moflon.org/
http://www.eclipse.org/modeling/emft/henshin/
http://www.jetbrains.com/mps/

An Instrumented Approach for Model Verification.
Journal of Software, 4(6), 2009.

[7] B. Combemale, P.-L. Garoche, X. Crégut, X. Thirioux,
and F. Vernadat. Towards a Formal Verification of
Process Model’s Properties SimplePDL and TOCL
Case Study. In ICEIS (3), pages 80–89, 2007.

[8] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and
E. Visser. Code generation by model transformation:
a case study in transformation modularity. Software
and System Modeling, 9(3):375–402, 2010.

[9] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl:
A model transformation tool. Science of Computer
Programming, 72(1-2):31–39, June 2008.

[10] L. C. L. Kats and E. Visser. The spoofax language
workbench: rules for declarative specification of
languages and ides. In W. R. Cook, S. Clarke, and
M. C. Rinard, editors, OOPSLA, pages 444–463.
ACM, 2010.

[11] D. S. Kolovos, R. F. Paige, and F. Polack. The epsilon
transformation language. In A. Vallecillo, J. Gray, and
A. Pierantonio, editors, ICMT, volume 5063 of Lecture
Notes in Computer Science, pages 46–60. Springer,
2008.

[12] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern
matching compiler for multiple target languages. In
G. Hedin, editor, Compiler Construction, volume 2622
of Lecture Notes in Computer Science, pages 61–76.
Springer Berlin / Heidelberg, 2003.

[13] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
L. C. Briand and C. Williams, editors, MoDELS,
volume 3713 of Lecture Notes in Computer Science,
pages 264–278. Springer, 2005.

[14] Object Management Group, Inc. Meta Object Facility
(MOF) 2.0 Query/View/Transformation (QVT)
Specification, version 1.0, Apr. 2008.

[15] J. R. Romero, J. E. Rivera, F. Durán, and
A. Vallecillo. Formal and tool support for model
driven engineering with maude. Journal of Object
Technology, 6(9):187–207, 2007.

[16] V. Rusu. Embedding domain-specific modelling
languages in maude specifications. ACM SIGSOFT
Software Engineering Notes, 36(1):1–8, 2011.

[17] A. Schürr and F. Klar. 15 years of triple graph
grammars. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, ICGT, volume 5214 of Lecture
Notes in Computer Science, pages 411–425. Springer,
2008.

[18] S. Sendall and W. Kozaczynski. Model transformation:
the heart and soul of model-driven software
development. Software, IEEE, 20(5):42–45, 2003.

[19] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition, 2009.

[20] G. Taentzer. What algebraic graph transformations
can do for model transformations. ECEASST, 30,
2010.

	Introduction
	From Process models to Petri nets
	Model transformation in Java with pattern-matching
	A generalized approach for model transformations using strategies
	Related work
	Conclusion and future work
	References

