
Island Grammar-based Parsing using
GLL and Tom

Ali Afroozeh1, Jean-Christophe Bach2,3,4, Mark van den Brand1, Adrian
Johnstone5, Maarten Manders1, Pierre-Etienne Moreau2,3,4, and Elizabeth

Scott5

1 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands
afroozeh@gmail.com, m.g.j.v.d.brand@tue.nl, m.w.manders@tue.nl

2 Inria, Villers-lès-Nancy, F-54600, France
3 Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France

4 CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France
jeanchristophe.bach@inria.fr, pierre-etienne.moreau@loria.fr

5 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
a.johnstone@rhul.ac.uk, eas@cs.rhul.ac.uk

Abstract. Extending a language by embedding within it another lan-
guage presents significant parsing challenges, especially if the embedding
is recursive. The composite grammar is likely to be nondeterministic as
a result of tokens that are valid in both the host and the embedded lan-
guage. In this paper we examine the challenges of embedding the Tom
language into a variety of general-purpose high level languages. Tom
provides syntax and semantics for advanced pattern matching and tree
rewriting facilities. Embedded Tom constructs are translated into the
host language by a preprocessor, the output of which is a composite pro-
gram written purely in the host language. Tom implementations exist for
Java, C, C#, Python and Caml. The current parser is complex and diffi-
cult to maintain. In this paper, we describe how Tom can be parsed using
island grammars implemented with the Generalised LL (GLL) parsing
algorithm. The grammar is, as might be expected, ambiguous. Extract-
ing the correct derivation relies on our disambiguation strategy which is
based on pattern matching within the parse forest. We describe different
classes of ambiguity and propose patterns for resolving them.

Keywords: GLL, Tom, island grammars, parsing, disambiguation

1 Introduction

Modern software systems are composed of a wide range of programming lan-
guages. In many cases there is even a mixture of programming languages within
one program. A traditional example is Cobol with CICS or SQL embeddings. It
is possible for these embeddings to be realised via strings in which the extension
constructs are encoded. In this case the parser of the host language does not
need to be aware of the fact that another language is present. The drawback of

these string encodings is that syntax errors in the embedded language constructs
are not detected until a later phase in which these constructs are processed.

In the last decade language developers have been working on extending general-
purpose programming languages with domain-specific languages, referred to in
this paper as guest languages. The language embeddings which are not sim-
ple string encodings present a challenge from a parsing point of view, espe-
cially if the general-purpose programming language and the embeddings can be
unboundedly nested. Tom [1] is an example of such an extension which pro-
vides general-purpose programming languages, such as Java, C, C#, Python,
and Caml, referred to in this paper as the host language, with advanced pattern
matching, term rewriting and tree traversal functionality. The Tom compiler
processes the Tom constructs and generates corresponding host language code.
The host-language compiler can then be used to build the final program from
the generated code. The main advantage of this two-phase compiling approach is
that the host-language compiler remains unaware of the extension constructs. As
a result, the host language can evolve without breaking the extension’s compiler,
and the guest language can be used to extend other host languages.

If language embeddings are not simple string encodings, the syntax of the host
language needs to be modified to accommodate the guest language. This is usu-
ally done by using tags which signal the beginning and end of guest constructs.
In case of nesting host constructs inside guest construct, another set of tags
may be employed for notifying the parser of the return to the host language [2].
However, the use of tags for switching between languages is not very convenient
for developers who use the language. In Tom, only an opening tag is used, while
the closing tag is the same as the closing tag of blocks in the host language. Fur-
thermore, switching to the host language inside Tom constructs does not need
any special tag, and the host and guest languages may be unboundedly nested.
These features make parsing Tom even more challenging.

Parsing the full syntax of the host language is neither desirable nor practical
in many cases, especially for Tom, in which we only need to extract the guest
constructs. One way to avoid parsing the full syntax of the host language is to
use island grammars [3]. An island grammar captures the important constructs,
embedded constructs in our case, as “island” and ignores the rest as “water". Two
main issues should be taken into consideration while parsing island grammars.
First, the class of deterministic context-free languages is not closed under union,
meaning that the union of two deterministic languages may no longer be deter-
ministic. Therefore, even if one designs LL(k) or LR(k) syntax for a language
extension, there is no guarantee that the resulting language is in the same class.
Second, the host and extension languages may share tokens, which may lead to
ambiguities. The ambiguities from shared tokens cannot always be resolved by
rewriting the grammar, using more lookahead tokens or backtracking, so there
is a need for more sophisticated disambiguation schemes.

Attempting to parse an island grammar of a language using standard LL or LR
parsing techniques will, at the very least, involve significant modifications in the
parser and, in worst case, may not even be possible. For example, the current
Tom parser uses multiple parsers, implemented in ANTLR1, to deal with the
host and Tom constructs separately. This implementation is complex, hard to
maintain, and does not reflect the grammar of the language. Moreover, having
a complex parser implementation makes the changes in and evolution of (both)
languages a burden.

During the last 30 years, more efficient implementations of generalised parsers
have become available. Since the algorithm formulated by Tomita [4] there
have been a number of generalised LR parsing (GLR) implementations, such
as GLR [5], a scannerless variant (SGLR) [6] and Dparser2. Johnstone and Scott
developed a generalised LL (GLL) parser [7] in which the function call stack in a
traditional recursive descent parser is replaced by a structure similar to the stack
data structure (Graph Structured Stack) used in GLR parsing. GLL parsers are
particularly interesting because their implementations are straightforward and
efficient.

Our goal is to avoid manipulation within a parser in order to provide a generic,
reusable solution for parsing language embeddings. We have chosen Tom as our
case study, mainly because of challenges involved in parsing Tom such as recur-
sive embedding and the lack of closing tags. In this paper, we present an island
grammar for Tom in EBNF. The fundamental question is how to deal with am-
biguities present in island grammars which support recursive embedding. For
disambiguation we perform pattern matching within the parse forest. To vali-
date our approach, we conducted parsing experiments using an improved version
of our Java implementation of GLL [8].

The rest of this paper is organised as follows. In Sect. 2 we introduce Tom as
a language for term rewriting and give a brief description of the GLL parsing
algorithm along with some notes on our GLL implementation. Section 3 describes
the idea of island grammars by defining an island grammar for Tom. In Sect. 4
we illustrate our mechanism for resolving ambiguities in island-based grammars
by providing disambiguation rules for different types of ambiguities present in
Tom. The results of parsing Tom examples are presented in Sect. 5. In Sect. 6
we present other work in the area of parsing embedded languages and compare
our approach with them. Finally, in Sect. 7, a conclusion to this paper and some
ideas for future work are given.

2 Preliminaries

In this section we introduce the Tom language which is used for two different
purposes in the rest of this paper. First, Tom is used as an example of an em-
1 http://www.antlr.org/
2 http://dparser.sourceforge.net/

http://www.antlr.org/
http://dparser.sourceforge.net/

bedded syntax with recursive nesting, which poses difficulties for conventional
deterministic parsers. Second, Tom is used as a pattern matching and rewriting
technology for implementing a disambiguation mechanism for island grammars.
The rest of this section gives a brief explanation of the GLL parsing algorithm
and our Java-based GLL implementation.

2.1 Tom in a Nutshell

Tom [9,1] is a language based on rewriting calculus and is designed to integrate
term rewriting and pattern matching facilities into general-purpose programming
languages (GPLs) such as Java, C, C#, Python, and Caml. Tom relies on the
Formal Island framework [10], meaning that the underlying host language does
not need to be parsed in order to compile Tom constructs.

The basic functionality of Tom is pattern matching through the %match construct.
This construct can be seen as a generalisation of the switch-case construct in
many GPLs. The %match construct is composed of a set of rules where the left-
hand side is a pattern, i.e., a tree that may contain variables, and the right-hand
side an action, given by a Java block that may in turn contain Tom constructs.

A second construct provided by Tom is the backquote (‘) term. Given an alge-
braic term, i.e., a tree, a backquote term builds the corresponding data structure
by allocating and initialising the required objects in memory.

A third component of the Tom language is a formalism to describe algebraic
data structures by means of the %gom construct. This corresponds to the defini-
tion of inductive types in classical functional programming. There are two main
ways of using this formalism: the first one is defining an algebraic data type in
Gom and generating Java classes which implement the data type. This is similar
to the Eclipse Modeling Framework3, in which a Java implementation can be
generated from a meta-model definition. The second approach assumes that a
data structure implementation, for example in Java, already exists. Then, an
algebraic data type in Gom can be defined to provide a mapping to connect the
algebraic type to the existing implementation.

Listing 1 illustrates a simple example of a Tom program. The program starts with
a Java class definition. The %gom construct defines an algebraic data type with one
module, Peano. The module defines a sort Nat with two constructors: zero and suc.
The constructor suc takes a variable n as a field. Given a signature, a well-formed
and well-typed term can be built using the backquote (‘) construct. For example,
for Peano, ‘zero() and ‘suc(zero()) are correct terms, while ‘suc(zero(),zero())

or ‘suc(3) are not well formed and not well typed, respectively.

In the example in List. 1, the plus() and greaterThan() methods are implemented
by pattern matching. The semantics of pattern matching in Tom is close to the

3 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

public class PeanoExample {

%gom {
module Peano
Nat = zero() | suc(n: Nat)
}

public Nat plus(Nat t1, Nat t2) {
%match(t1,t2) {
x,zero() -> { return ‘x; }
x,suc(y) -> { return ‘suc(plus(x,y)); }

}

boolean greaterThan(Nat t1, Nat t2) {
%match(t1,t2) {
x,x -> { return false; }
suc(_),zero() -> { return true; }
zero(),suc(_) -> { return false; }
suc(x),suc(y) -> { return ‘greaterThan(x,y); }
}

}

public final static void main(String[] args) {
Nat N = ‘zero();
for(int i=0 ; i<10 ; i++) { N = ‘suc(N); }

} }

List. 1: An example of a Java and Tom program. Tom parts are in bold.

match which exists in functional programming languages, but in an imperative
context. A %match construct is parametrised by a list of subjects, i.e., expressions
evaluated to ground terms, and contains a list of rules. The left-hand side of
the rules are patterns built upon constructors and new variables, without any
restriction on linearity (a variable may appear twice, as in x,x). The right-hand
side is a Java statement that is executed when the pattern matches the subject.
Using the backquote construct (‘) a term can be created and returned. Similar to
the standard switch/case construct, patterns are evaluated from top to bottom.
In contrast to the functional match, several actions, i.e., right-hand side, may
be fired for a given subject as long as no return or break is executed.

In addition to the syntactic matching capabilities illustrated above, Tom also
supports more complex matching theories such as matching modulo associativity,
associativity with neutral element, and associativity-commutativity.

2.2 Generalised LL Parsing

Top down parsers whose execution closely follows the structure of the underlying
grammar are attractive, particularly because they make grammar debugging
easier. GLL is a top down parsing technique which is fully general, allowing even
left recursive grammars, which has worst-case cubic runtime order and which is
close to linear on most ‘real’ grammars. In this section we give a basic description
of the technique, a full formal description can be found in [7].

A GLL parser effectively traverses the grammar using the input string to guide
the traversal. There may be several traversal threads, each of which has a pointer
into the grammar and a pointer into the input string. For each nonterminal A
there is a block of code corresponding to each alternate of A. At each step
of the traversal, (i) if the grammar pointer is immediately before a terminal
we attempt to match it to the current input symbol; (ii) if it is immediately
before a nonterminal B then the pointer moves to the start of the block of code

associated with B; (iii) if it is at the end of an alternate of A then it moves to the
position immediately after the instance of A from which it came. This control
flow is essentially the same as for a classical recursive descent parser in which
the blocks of code for a nonterminal X are collected into a parse function for X
with traversal steps of type (ii) implemented as a function call to X and traversal
steps of type (iii) implemented as function return. In classical recursive descent,
we use the runtime stack to manage actions (ii) and (iii) but in a general parser
there may be multiple parallel traversals arising from nondeterminism; thus in
the GLL algorithm the call stack is handled directly using a Tomita-style graph
structured stack (GSS) which allows the potentially infinitely many stacks arising
from multiple traversals to be merged and handled efficiently.

Multiple traversal threads are handled using process descriptors, making the
algorithm parallel rather than backtracking in nature. Each time a traversal
bifurcates, the current grammar and input pointers, together with the top of
the current stack and associated portion of the derivation tree, are recorded in
a descriptor. The outer loop of a GLL algorithm removes a descriptor from the
set of pending descriptors and continues the traversal thread from the point at
which the descriptor was created. When the set of pending descriptors is empty
all possible traversals will have been explored and all derivations (if there are any)
will have been found. Details of the creation and processing of the descriptors
by a GLL algorithm can be found in [7] and a more implementation oriented
discussion can be found in [11].

A, 1, 3

c, 2, 3

S, 0, 3

b, 1, 2a, 0, 1

cc
cc

@@R

��	

��	

packed node
intermediate node �� ���� ��

�� ��

�� ���� ��
S ::= ab · c, 0, 2

"" ZZ
@
@
@
@@R

�
�
�

�
�
�=

SSw

�����9 AAU

Fig. 1: SPPF

The output of a GLL parser is a rep-
resentation of all the possible deriva-
tions of the input in the form of a
shared packed parse forest (SPPF), a
union of all the derivation trees of the
input in which nodes with the same
tree below them are shared and nodes
which correspond to different deriva-
tions of the same substring from the
same nonterminal are combined by
creating a packed node for each family
of children. To make sure that descrip-
tors contain only one tree node, the root of the current subtree, the SPPFs are
binarised in the natural left associative manner, with the two left-most children
being grouped under an intermediate node, which is in turn then grouped with
the next child to the left, etc. It is this binarisation that keeps both the size of
the SPPF and the number of descriptors worst-case cubic.

In detail, a binarised SPPF has three types of SPPF nodes: symbol nodes, with
labels of the form (x, j, i) where x is a terminal, nonterminal or ε and 0 ≤ j ≤
i ≤ n; intermediate nodes, with labels of the form (t, j, i); and packed nodes,
with labels for the form (t, k), where 0 ≤ k ≤ n and t is a grammar slot.
(A grammar slot is essentially an LR(0)-item, a formal definition can be found

in [7].) Terminal symbol nodes have no children. Nonterminal symbol nodes,
(A, j, i), have packed node children of the form (A ::= γ·, k) and intermediate
nodes, (t, j, i), have packed node children with labels of the form (t, k), where
j ≤ k ≤ i. A packed node has one or two children, the right child is a symbol
node (x, k, i), and the left child, if it exists, is a symbol or intermediate node,
(s, j, k). For example, for the grammar S ::= abc | aA, A ::= bc we obtain the
SPPF as shown in Fig. 1. As is clear from this example, for ambiguous grammars
there will be more than one derivation.

2.3 GLL Implementation Notes

Currently, the GLL parsing algorithm does not natively support EBNF; there-
fore, we convert a grammar described in EBNF to an equivalent BNF grammar
prior to the generation of a GLL parser. In our conversion scheme, for example,
an EBNF symbol X∗, the repetition of X, is replaced by a nonterminal named
X_∗, having two alternates: X_∗ ::= X X_∗ and X_∗ ::= ε. Because of these
conversions, the resulting SPPF contains symbol nodes associated with these
intermediary EBNF symbols. After the parsing, when the SPPF is created, the
intermediary EBNF nodes are removed, by replacing them with their children,
so that the resulting SPPF corresponds to the EBNF grammar.

Our GLL implementation uses a separate lexer. The lexer is driven by the parser
and returns all possible token types seen at a particular point of the input. These
tokens may overlap. Being a top-down parser, GLL decides at each grammar
position whether tokens received from the lexer are relevant. This check is per-
formed by testing the token types against the first and follow sets of nonterminals
at the position. All the relevant tokens at a position are consumed and irrelevant
ones are simply ignored.

The syntax of lexical definition used by our lexer is inspired by SDF [12]. In this
syntax, a regular expression is defined as follows. A character c is represented by
itself. "." is a special character matching all other characters. Meta characters,
which have a specific meaning in the lexical definition, have to be escaped with
a backslash to match the literal character they represent: \\, \., \ˆ, \[, \], and
\-. A range is represented by a-b where a and b are characters. A character class
is defined as [r1r2...rn] where each ri is either a character or a character range.
[^r1r2...rn] defines the negation of a character class. In our syntax, a character
class is the smallest building block of a lexical definition, thus all characters
should be defined inside a character class. If α and β are regular expressions,
αβ, α|β are also regular expressions, denoting the concatenation of and the
alternation between α and β, respectively. Moreover, α∗, α+, and α? denote
zero or more, one or more, and zero or one occurrence of α, respectively. Finally,
A group can be specified by enclosing a regular expression within parentheses,
e.g., (α).

3 Island Grammars: Tom Syntax as an Example

Island grammars are a method for describing the syntax of a language, concen-
trating only on relevant constructs. An island grammar comprises two sets of
rules: rules for islands describing the relevant language constructs which should
be fully parsed and rules for water describing the rest of the text with which
we are not concerned. In parsing embedded languages, the embedded language
and host language constructs are captured as island and water, respectively. In
this section, we define an island grammar for Tom. The presented approach is
general enough to be used in other contexts as well.

context-free syntax
Program ::= Chunk*
Chunk ::= Water | Island

List. 2: The starting rules of an island grammar

The starting rules of an island grammar are shown in List. 2. As can be seen, a
program is defined as a list of Chunk nonterminals, each being either an island
or water. The rules defining water are presented in List. 3. In island grammars,
the overlap between water and island tokens should be recognised. To this end,
we define fine-grained Water tokens being as small as the building blocks of the
supported host languages. In addition, our island grammar is designed to be
host-language agnostic, although it may not possible to completely achieve it.
For this purpose, the water definition should be flexible and capture the different
varieties of tokens appearing in different supported host languages. For example,
SpecialChar in List. 3 contains the union of all different symbols appearing in the
host languages supported by our island grammar.

context-free syntax
Water ::= Identifier | Integer | String | Character | SpecialChar
lexical syntax
Identifier ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*
Integer ::= [0-9]+
String ::= ["]([^"\\]|[\\]["trnu\\])*["]
Character ::= [’].[’] | [’][\\][btnfr"’\\][’]
SpecialChar ::= [; : + \- = & < > * ! % : ? | & @ \[\] \^ # $ { } , \. ()]

List. 3: The definition of Water

context-free syntax
Island ::= TomConstruct | BackQuoteTerm
TomConstruct ::= IncludeConstruct | MatchConstruct | GomConstruct | ...

List. 4: Tom constructs

As can be seen in List. 4, Tom islands fall into two groups: Tom constructs,
prefixed by %, and the backquote term. Most of the Tom constructs have the same
structure. In this section, we focus on two constructs: the %include construct,

which is the simplest construct of Tom, and the %match construct, which is one
of the most used features of Tom. The syntax of these constructs is presented
in List. 5. As can be seen, the production rule of PatternAction contains Chunk*,
meaning that Tom and host-language constructs can be recursively nested inside
a %match construct.

context-free syntax
IncludeConstruct ::= "%include" "{" Water* "}"

MatchConstruct ::= "%match" ("(" MatchArguments ")")? "{" PatternAction* "}"
MatchArguments ::= Type? Term ("," Type? Term)*
PatternAction ::= PatternList "->" "{" Chunk* "}"
Term ::= Identifier | VariableStar | Identifier "(" (Term ("," Term)*)? ")"
lexical syntax
VariableStar ::= [a-zA-Z_]+[a-zA-Z0-9\-_]* [*]
Type ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*

List. 5: The %include and %match constructs

Listing 6 introduces the backquote term. As can be seen, a new water type,
BackQuoteWater, is introduced in the backquote term definition. The difference
between BackQuoteWater and Water is that the former does not contain parentheses,
dot, or commas, while the latter does. These characters should be captured as
part of a backquote term’s structure and not as water. Examples of backquote
terms are ‘x, ‘x*, ‘f(1 + x), ‘f(1 + h(t), x), and ‘(f(x)%b). The idea behind
backquote terms is to combine classical algebraic notations of term rewriting with
host language code such as "1 +" or "%b". Note that x and f(x) inside a backquote
term can be interpreted as Tom terms or Java variables and method calls. Based
on the defined grammar in List. 6 and disambiguation rules in Sect. 4.3, x and f(x)

are recognized as Tom terms. In the compilation phase, if these terms were not
valid Tom terms, they will be printed to the output as they are, thus producing
Java variables and method calls.

context-free syntax
BackQuoteTerm ::= "‘" CompositeTerm | "‘" "(" CompositeTerm+ ")"
CompositeTerm ::= VariableStar | Variable

| Identifier "(" (CompositeTerm+ ("," CompositeTerm+)*)? ")"
| BackQuoteWater

BackQuoteWater ::= Identifier | Integer | String | Character | BackQuoteSpecialChar
lexical syntax
BackQuoteSpecialChar ::= [; : + \- = & < > * ! % : ? | & @ \[\] \^ # $ { }]

List. 6: The backquote term

4 Disambiguation

In this section we propose a pattern matching technique to resolve the ambi-
guities present in island grammars. The pattern matching is performed after
parsing, when the SPPF is fully built. As discussed in Sect. 2.2, an SPPF pro-
vides efficient means for representing ambiguities by sharing common subtrees.

An ambiguity node in an SPPF is a symbol or an intermediate node having
more than one packed node as children. For example, consider the grammar of
arithmetic expressions in List. 7. For this grammar, the input string "1+2+3" is
ambiguous. Its corresponding SPPF is presented in Fig. 2, which contains an
ambiguity occurring under the root symbol node.

context-free syntax
E ::= E "+" E | Digit
lexical syntax
Digit ::= [1-9]+

List. 7: A simple grammar for arithmetic expressions

E

E

E

+

E

Digit: 1

+

E

Digit: 2

Digit: 3E

Fig. 2: The complete SPPF

For SPPF visualisation, packed nodes are rep-
resented by small circles, intermediate nodes
by rectangles, and symbol nodes by rounded
rectangles in which the name of the symbol
node is written. If a symbol node represents
a terminal, the matched lexeme is also shown
next to the terminal name, e.g., Digit: 1. Key-
words, e.g., "*", are represented by themselves
without the quotation marks. Furthermore,
for a more compact visualisation, nodes re-
lated to the recognition of layout, whitespace
and comments, are excluded from the fig-
ures in this section. In our GLL implemen-
tation, layout is recognised after each termi-
nal and before the start symbol of a gram-
mar. Layout is captured through the nonter-
minal Layout, which is defined as Layout ::=

LayoutDef*, where LayoutDef is a lexical defini-
tion of a layout, e.g., whitespace.

While an SPPF is built, intermediate nodes
are added for binarisation, which is essen-
tial for controlling the complexity of the GLL
parsing algorithm. Furthermore, the version
of the GLL algorithm we are using creates
packed nodes even when there are no ambiguities. These additional nodes lead
to a derivation structure which does not directly correspond to the grammar
from which the SPPF has been created.

After the successful construction of an SPPF, one can traverse the SPPF and
remove all packed nodes which are not part of an ambiguity, i.e., the packed
nodes which are the only child. The intermediate nodes which only have one
child, the ones which do not present an ambiguity, can also be removed. When a
node is removed, its children are attached to the parent of the node. Care should
be taken that the order of children in the parent remains intact. By removing

unnecessary packed and intermediate nodes, the SPPF presented in Fig. 2 can
be reduced to the SPPF in Fig. 3.

E

E +

E

+ E

E

Digit: 1

E

Digit: 2 Digit: 3

Fig. 3: The reduced SPPF

To resolve ambiguities in an SPPF, we tra-
verse a reduced SPPF to find the deepest am-
biguity node. At the ambiguity node, its chil-
dren are checked against a set of disambigua-
tion rules. A disambiguation rule is a rewrite
rule that can either (i) remove a packed node
matching an “illegal” pattern, or (ii) prefer a
packed node over another one. These rules are
called remove and prefer rules, respectively. In
prefer rules, none of the patterns is illegal, but
if both patterns appear under an ambiguity
node, one of them should be preferred. A disambiguation rule may apply to
more than one packed node under an ambiguity node or may not apply at all.

After applying the set of disambiguation rules on an ambiguity node, if only
one packed node remains, the disambiguation is successful. Then, the remaining
packed node is replaced by its children. This resolves the ambiguity. To com-
pletely disambiguate an SPPF, disambiguation is performed bottom up. This is
because, in many cases, resolving an ambiguity in higher level ambiguity nodes
in an SPPF depends on first resolving the ambiguities in deeper levels, as sub-
trees of an ambiguity node in a higher level may be ambiguous themselves. By
performing the disambiguation bottom up, it is ensured that the subtrees of
an ambiguity node are not ambiguous, thus they can uniquely be specified by
tree patterns. If the entire disambiguation procedure is successful, an SPPF is
transformed into a parse tree only containing symbol nodes.

The syntax for writing disambiguation rules as follows:

– A remove rule is written as remove P, where P is a pattern matching a packed
node under an ambiguity node.

– A prefer rule is written as prefer Pi Pj, where Pi and Pj are patterns match-
ing sibling packed nodes under an ambiguous node, in which Pi should be
preferred to Pj. Note that in this notation the list of packed nodes is con-
sidered modulo associativity-commutativity (AC), i.e., as a multiset data-
structure, and thus the order in which packed nodes appear does not matter.

– A packed node is written as [t1, t2, ..., tn], where each ti is a pattern describ-
ing a symbol node.

– A symbol node whose children are not important for us is represented by
its label, e.g., E. If the symbol node represents a keyword, it should be sur-
rounded by double-quotes, e.g., "+".

– A symbol node in the general form is written as l(t1, t2, ..., tn), where l is the
label of the symbol node, and each ti is a pattern describing a child symbol
node. Note that after removing the unnecessary packed and intermediate
nodes, packed nodes can only appear as direct children of an ambiguity

node. Therefore, in defining the symbol nodes, no packed node can appear
as their children. Using this syntax, the tree under a packed node can be
described in as much detail as needed by expanding symbol nodes.

– "_" and "_*" match any symbol node and zero or more occurrence of any
symbol nodes, respectively.

Note that writing patterns using this syntax does not require the user to explic-
itly specify layout nonterminals. Layouts are automatically captured after each
terminal symbol, when the patterns are translated to Tom patterns, see Sect. 4.4.
The ambiguity shown in Fig. 3 can be resolved by selecting the left-associative
derivation, i.e., (1+2)+3, rather than the other derivation, 1+(2+3). For this pur-
pose, we define the right-associative derivation as illegal and remove it using the
following rule: remove [E, "+", E(E, "+", E)]. As can be seen, the disambiguation
rule closely follows the grammar rules and the resulting SPPF.

4.1 The Island-Water Ambiguity

Tom islands, with the exception of the backquote term, do not have unique
opening and closing tags. We define a token as unique if it only appears in either
the host or the embedded language. The lack of unique opening and closing
tags may mislead the parser into recognising a Tom construct as a collection of
successive water tokens. This leads to an ambiguity which we call the island-
water ambiguity.

Consider the starting rules of Tom’s island grammar in List. 2. When a GLL
parser is about to select the alternates of Chunk, if the current input index points
to a percentage sign followed by a Tom construct name, such as include or match,
both alternates of Chunk are selected. Processing both alternates may lead to an
island-water ambiguity. The SPPF corresponding to parsing "%include {file}" is
illustrated in Fig. 4.

The island-water ambiguity can be resolved by preferring an island to a sequence
of water tokens. This can be achieved by the following rewrite rule:

prefer [Chunk(Island)][Chunk(Water), _*]

As for this example, if the ambiguity contains more than one water token, the
ambiguity occurs under a node labelled Chunk_*, which is in fact an intermediary
node resulting from the EBNF to BNF conversion, see Sect. 2.3. The conver-
sion, however, does not affect the writing of patterns, as patterns describe tree
structures under packed nodes and not their parent, the ambiguous node.

4.2 The Island-Island Ambiguity

Detecting the end of a Tom construct is significantly more difficult than its
beginning. Tom constructs end with a closing brace, which is also the end-of-
block indicator in the supported host languages of Tom. Detecting the end of

Program

Chunk_*

Chunk Chunk Chunk Chunk

Chunk

Chunk

Island

TomConstruct

IncludeConstruct

%include { Water }

Identifier: file

Water Water Water Water

SpecialChar: % Identifier: include SpecialChar: { SpecialChar: }

Fig. 4: The Island-Water ambiguity in an %include construct

a Tom construct may lead to what we call the island-island ambiguity, which
happens between islands with different lengths. In this kind of ambiguity, some
closing braces have been wrongly interpreted as water.

1 %match(s) {
2 x -> {
3 { System.out.println(‘x); }
4 }
5 }

List. 8: A %match construct containing an Island-Island ambiguity

An example of a Tom program containing an island-island ambiguity is given in
List. 8. Parsing this example produces two different match constructs, and hence
an ambiguity. A match construct needs at least two opening and closing braces
to be successfully recognised, and the rest of the tokens, including any other
closing braces, may be treated as water. For this example, every closing brace,
after the second closing brace on line 4, may be interpreted as the closing brace
of the match construct.

Resolving the island-island ambiguity is difficult, mainly because it depends on
the semantics of the embedded and host languages. We disambiguate this case
by choosing the match construct which has well-balanced braces in its inner
water fragments. There are two ways to check the well-balancedness of braces.
First, we can use a manual traversal function which counts the opening and
closing braces inside water fragments of a Tom construct. This check is, however,
expensive for large islands. Second, we can prevent islands with unbalanced
braces to be created in the first place by modifying the lexical definition of
SpecialChar in List. 3. We remove the curly braces from the lexical definition and
add "{" Chunk* "}" as a new alternate to Water. With this modification, opening

and closing braces can only be recognised as part of a match construct or pairs
of braces surrounding water tokens. We chose the second option for resolving
the island-island ambiguities occurring in Tom’s island grammar.

4.3 The Backquote Term Ambiguities

Identifying the beginning of a backquote term is straightforward because the
backquote character does not exist in Tom’s supported host languages. There-
fore, no ambiguity occurs at the beginning of a backquote term. However, a
number of ambiguities may occur while detecting the end of a backquote term.
The simplest example of an ambiguous backquote term is ‘x, in which x can
either be recognised as BackQuoteWater or Variable. This ambiguity is depicted
in Fig. 5. For disambiguation, we prefer a Variable over BackQuoteWater by the
following disambiguation rule:

prefer [Variable][BackQuoteWater]

Program

Chunk

Island

BackQuoteTerm

` CompositeTerm

BackQuoteWater Variable: x

Identifier: x

Fig. 5: BackQuoteWater/Variable

Program

Chunk_*

Chunk Chunk Chunk

Island

BackQuoteTerm

` CompositeTerm

VariableStar: x*

Island Water

BackQuoteTerm

CompositeTerm

BackQuoteWater Variable: x

Identifier: x

SpecialChar: *

Fig. 6: Variable/VariableStar

Another example of ambiguity in the backquote term can be observed in ‘x*,
which can be recognised as a backquote term containing VariableStar, denoting
a list of terms, or a backquote term containing the variable x after which a water
token (the asterisk character) follows. The disambiguation in this case depends
on the typing information of the host language. For example, ‘x* y, considering

Java as the host language, should be recognised as ‘x multiplied by y, and not ‘x*
followed by y, provided that y is an integer. We do not, however, deal with the
typing complexities and currently follow a simple rule: if an asterisk character
directly follows a variable, the recognition of VariableStar should be preferred.
The SPPF corresponding to the parsing of ‘x* is shown in Fig. 6.

In the SPPF in Fig. 6 two ambiguities are present: one between the recognition
of x as BackQuoteWater or Variable, which is already discussed. The new ambiguity,
caused by the presence of the asterisk character is under Chunk_*, can be resolved
by the following rule:

prefer [Chunk(Island(BackQuoteTerm))][Chunk(Island(BackQuoteTerm)),Chunk(Water)]

An ambiguity similar to the one present in ‘x* occurs in backquote terms ending
in parentheses, see List. 6. For example, in ‘x(), parentheses can be recognised
as water and not as part of the backquote term. We use a disambiguation rule
in which a backquote term containing the parentheses as part of the backquote
term should be preferred to the one in which parentheses are recognised as water.

4.4 Implementation

So far, we described our disambiguation mechanism without exploring the im-
plementation details. To implement disambiguation rules, we use the pattern
matching and rewriting facilities of Tom. Listing 9 defines an algebraic data type
for an SPPF using a %gom construct. The algebraic type defines a sort SPPFNode

with three constructors, corresponding to three node types present in an SPPF,
and the sort NodeList defining a list of nodes. The SymbolNode constructor cre-
ates a symbol node with its label and its list of the children. The PackeNode and
IntermediateNode constructors create a packed or intermediate node by their list
of children. Finally, concNode is the constructor for creating a list of SPPNode terms
using the * operator.

%gom {
SPPFNode = SymbolNode(label:String, children:NodeList)

| PackedNode(children:NodeList)
| IntermediateNode(children:NodeList)

NodeList = concNode(SPPFNode*)
}

List. 9: The algebraic type definition for an SPPF

In addition to the algebraic signature in List. 9, we use a Tom mapping which
connects the Java implementation of an SPPF, used by the parser, to the alge-
braic view. For example, using the mapping, an instance of the SymbolNode class,
from the Java implementation, is viewed as a SymbolNode algebraic constructor.
The subterms of this constructor, which are of sort String and NodeList, are then
automatically retrieved by the mapping. More importantly, through this alge-
braic view, the Java implementation can be automatically traversed using Tom

strategies, without the need to provide hand-written visitors. All this efficient
and statically-typed machinery is generated and optimised by the Tom compiler.

SymbolNode("E", concNode(z1*,
PackedNode(concNode(

SymbolNode("E",_)
SymbolNode("+",_),_,
SymbolNode("E", concNode(SymbolNode("E",_), SymbolNode("+",_), _, SymbolNode("E",_)))

)),z2*)) -> SymbolNode("E", concNode(z1*, z2*));

List. 10: A rewrite rule in Tom for disambiguating binary operators

The rule for removing the right-associativity, i.e., remove [E, "+", E(E, "+", E)],
is translated to the Tom rewrite rule in List. 10. The notation concNode(z1*,

PackedNode(...), z2*) denotes associative matching with neutral element, mean-
ing that the subterm PackedNode is searched into the list, the context, possibly
empty, being captured by variables z1* and z2*. Furthermore, as layout tokens
may be present after each terminal symbol, the anonymous variable "_" is auto-
matically added after each terminal to capture the layout.

5 Results

Using the island grammar and the disambiguation rules presented in Sects. 3
and 4, respectively, we were able to parse all the Tom programs from the tom-
examples package. This package, which is shipped with the source distribution
of Tom, contains more than 400 examples (for a total of 70,000 lines of code)
showing how Tom is used in practice. The size of these examples varies from 24
lines of code (679 characters) to 1,103 lines of code (30,453 characters).

Based on our findings, the examples having a size of about 10,000 characters
could be parsed and disambiguated in less than one second, and the disam-
biguation time of an instance was always lower than its parsing time. Moreover,
from what we observed, the parsing time for Tom examples was linear.

Table 1: Parsing times for the selected Tom examples (in milliseconds)
Example file #Lines #Tokens Parsing time Disambiguation time Total time
Peano.t 84 340 362 64 426
Compiler.t 169 1,365 718 304 1,022
Analysis.t 253 1,519 667 358 1,025
Langton.t 490 3,430 1,169 524 1,693
TypeInference.t 909 6,503 1,632 850 2,482
BigExample.t 1,378 11,682 2,917 739 3,656

In order to evaluate the efficiency of our approach, we selected five representative
examples, see Table 1. Peano is a simple example manipulating Peano integers.
Compiler is a compiler for a Lazy-ML implementation. Analysis is a bytecode

static analyser based on CTL formulae. Langton is a cellular automata simula-
tor, which contains many algebraic patterns. TypeInference is a type-inference
algorithm for patterns, in presence of sub-typing. This example contains many
nested %match constructs. We also considered an artificial example, BigExample,
that could be made as big as needed, by concatenating pieces of code.

We compared our implementation with the current implementation of the Tom
parser, which also uses an island-grammar approach, implemented using the
ANTLR parser generator. Currently, the ANTLR 3-based implementation is
approximatively twice as fast on a few examples than the GLL implementation.
However, our GLL implementation is not yet thoroughly optimised. In particular,
the scanner can be made more efficient. Therefore, we expect to obtain better
results in the future.

6 Related work

The name “island grammar” was coined in [13] and later elaborated on in [3].
Moonen showed in [3] how to utilise island grammars, written in SDF, to generate
robust parsers for reverse engineering purposes. Robust parsers should not fail
when parsing incomplete code, syntax errors, or embedded languages. However,
the focus of [3] is more on reverse engineering and information extraction from
source code rather than parsing embedded languages.

There has been considerable effort on embedding domain-specific languages in
general-purpose programming languages. For example, Bravenboer and Visser
[14] presented MetaBorg, a method for providing concrete syntax for object-
oriented libraries, such as Swing and XML, in Java. The authors demonstrated
how to express the concrete syntax of language compositions in SDF [12], and
transform the parsed embedded constructs to Java by applying rewriting rules
using Stratego4. In MetaBorg the full grammar of Java is parsed, while we use an
island-grammar based approach. Furthermore, MetaBorg uses distinct opening
and closing tags for transition between the host and embedded languages which
prevents many ambiguities to happen in the first place.

The ASF+SDFMeta-Environment5 has been used in a number of cases for devel-
oping island grammars. SDF, the underlying syntax formalism of the ASF+SDF
Meta-Enviornment, provides the prefer and avoid mechanisms to mark nodes
in the parse forest which should be kept or removed [15]. These mechanisms,
however, do not work in all cases and may produce unpredictable results. For
example, [16,17] show examples of island grammars which cannot be disam-
biguated using SDF. The problem with prefer and avoid mechanisms is that the
decision for selecting the desired parse tree under an ambiguity node is made by
only considering the highest level production rule, which are marked with prefer
4 http://strategoxt.org/
5 http://www.meta-environment.org/Meta-Environment/ASF+SDF

http://strategoxt.org/
http://www.meta-environment.org/Meta- Environment/ASF+SDF

or avoid. In many cases, the disambiguation cannot be done by merely checking
the highest level rule, and there is a need to explore the subtrees in more detail.
Our disambiguation syntax allows the user to express the trees under ambiguity
nodes using patterns in as much detail as needed.

An example of using island grammars in parsing embedded languages which
does not use a generalised parsing technique is presented by Synytskyy et al.
in [18]. The authors presented an approach for robust multilingual parsing using
island grammars. They demonstrated how to parse Microsoft’s Active Server
Pages (ASP) documents, a mix of HTML, Javascript, and VBScript, using island
grammars. For parsing, they used TXL6, which is a hybrid of functional and
rule-based programming styles. TXL uses top-down backtracking to recognise
the input. Due to too much backtracking, for some grammars, the parsing might
be very slow or impractical [19]. Moreover, a grammar expressed in TXL is
disambiguated by ordering the alternates. In contrast to this work, we used a
generalised parser which has the worst case complexity of O(n3). Moreover, our
disambiguation mechanism covers a wider range of ambiguities than alternate
ordering.

Another related work which does not use a generalised parsing technique is pre-
sented by Schwerdfeger and Van Wyk in [20]. The authors describe a mechanism
for verifying the composability of deterministic grammars. In their approach,
grammar extensions are checked for composability, and if all extensions pass the
check, an LR parser and a context-aware scanner is generated for the composi-
tion. The context-aware scanner is used to detect the overlaps between tokens.
The presented approach in [20] parses the full grammar of the host language
instead of an island grammar. Furthermore, as mentioned by the authors, not
all extensions pass the composiblitiy check. Our approach is more generic com-
pared to [20] since by using GLL no restriction exists on composing grammars.
More importantly, as explained in Sect. 2.3, a GLL parser with a separate lexer
only consumes token types which are relevant at the parsing position, thus effec-
tively providing context-sensitive lexing, without the need to modify the parser
or change the parsing algorithm. Finally, using GLL and our disambiguation
mechanism, we are able to deal with complex, ambiguous grammars.

For island grammar-based parsing, it is essential to deal with tokens which over-
lap or have different types. Aycock and Nigel Horspool in [21] proposed the
Schrödinger’s token method, in which the lexer reports the type of a token with
multiple interpretations as the Schrödinger type, which is in fact a meta type
representing all the actual types. When the parser receives a Schrödinger’s token,
for each of its actual types, parsing will be continued in parallel.

An alternative to Schrödinger’s token is to use scannerless parsing [6]. In scan-
nerless parsing there is no explicit lexer present, so the parser directly works on
the character level. This has the advantage of giving the parser the opportunity
to decide on the type of a token based on the context in which the token’s char-

6 http://www.txl.ca/

http://www.txl.ca/

acters appear. Scannerless parsing has mainly two disadvantages. First, because
every character in the language is a token, the size of the parse forest is larger
than parsing with a scanner. Second, ambiguities happening at the character
level, e.g., the longest match for keywords, should be explicitly resolved in the
parse tree. A GLL parser with a separate scanner provides the same power as
a scannerless parser, without having to deal with character level ambiguities, as
they are already resolved by the scanner.

7 Conclusions and Future Work

In this paper we have shown how languages based on island grammars can be
parsed using existing technologies such as GLL and Tom. We developed a host-
agnostic island grammar for Tom which only fully parses the Tom constructs and
ignores the host language constructs. The primary challenge of island grammar-
based parsing is the ambiguity resulting from the overlap between host and
embedded language tokens. We analysed different ambiguity classes of Tom’s
island grammar and provided patterns for resolving them.

Our main objective was to avoid modification within the parser in order to pro-
vide a generic solution for parsing embedded languages. We proposed a method
for disambiguating island grammars using pattern matching and rewriting the
parse forest. Our disambiguation mechanism is implemented by the pattern
matching mechanism of Tom. In addition, in one case, the island-island ambigu-
ity, we rewrote the grammar to resolve the ambiguity. Using our approach, one
can express a modular island grammar in EBNF, independent of the complexity
or the number of embedded languages.

We performed a number of experiments to validate our findings. In these ex-
periments, we parsed all the Tom files from the tom-examples package, with
different characteristics such as different sizes and number of islands. Moreover,
we compared our GLL implementation with the current ANTLR implementa-
tion. The GLL implementation has a parsing speed comparable to the current
implementation, but in a few cases the ANTLR implementation is twice as fast.

As future work, there are a number of paths we shall explore. First, we will
investigate how we can improve our GLL implementation as it is not yet thor-
oughly optimised. Second, we shall work on replacing the current ANTLR im-
plementation with the GLL implementation in the Tom compiler. Third, we will
investigate the possibility of pattern matching while parsing to increase the effi-
ciency of the disambiguation process. Finally, we plan to apply our approach to
other language compositions, e.g., Java+XML or Java+SQL, to determine how
generic our method is.

Acknowledgements. We would like to thank Alexander Serebrenik who has
provided us with feedback on an early draft of this work and also helped us in
measuring the complexity of parsing Tom examples.

References

1. Moreau, P.E., Ringeissen, C., Vittek, M.: A pattern matching compiler for multiple
target languages. In: Proceedings of the 12th international conference on Compiler
construction, Springer-Verlag (2003) 61–76

2. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax
embeddings. Science of Computer Programming 75(7) (2010) 473–495

3. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of
the Eighth Working Conference on Reverse Engineering (WCRE’01). (2001) 13–

4. Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Norwell, MA, USA (1985)

5. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, The Netherlands (1992)

6. Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam (1997)

7. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming (2012) To appear

8. Manders, M.W.: mlBNF - a syntax formalism for domain specific languages. Mas-
ter’s thesis, Eindhoven University of Technology, The Netherlands (2011)

9. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking
Rewriting on Java. In: Proceedings of the 18th international conference on Term
rewriting and applications. RTA’07, Springer-Verlag (2007) 36–47

10. Balland, E., Kirchner, C., Moreau, P.E.: Formal islands. In: Proceedings of the
11th international conference on Algebraic Methodology and Software Technology.
AMAST’06, Springer-Verlag (2006) 51–65

11. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In: Proceedings
of the Third international conference on Software language engineering. SLE’10,
Springer-Verlag (2011) 42–61

12. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF-reference manual-. SIGPLAN Not. 24(11) (1989) 43–75

13. van Deursen, A., Kuipers, T.: Building documentation generators. In: Proceedings
of the IEEE International Conference on Software Maintenance. (1999) 40–

14. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. SIGPLAN Not. 39(10) (2004)
365–383

15. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation
Filters for Scannerless Generalized LR Parsers. In: Proceedings of the 11th Inter-
national Conference on Compiler Construction, Springer-Verlag (2002) 143–158

16. Post, E.: Island grammars in ASF+SDF. Master’s thesis, University of Amsterdam,
The Netherlands (2007)

17. van der Leek, R.: Implementation Strategies for Island Grammars. Master’s thesis,
Delft University of Technology, The Netherlands (2005)

18. Synytskyy, N., Cordy, J.R., Dean, T.R.: Robust multilingual parsing using island
grammars. In: Proceedings of the 2003 conference of the Centre for Advanced
Studies on Collaborative research. CASCON ’03, IBM Press (2003) 266–278

19. Cordy, J.R.: TXL - A Language for Programming Language Tools and Applica-
tions. Electronic Notes in Theoretical Computer Science 110 (2004) 3–31

20. Schwerdfeger, A.C., Van Wyk, E.R.: Verifiable composition of deterministic gram-
mars. SIGPLAN Not. 44(6) (2009) 199–210

21. Aycock, J., Nigel Horspool, R.: Schrödinger’s Token. Software, Practice & Expe-
rience 31 (2001) 803–814

	Island Grammar-based Parsing using GLL and Tom

