
EMFModelsTransformationswithTom
jeanchristophe.bach@inria.fr,

pierre-etienne.moreau@loria.fr and marc.pantel@enseeiht.fr

Context

• Importance of MDE in software engineering: models
transformations are an essential part

• Two main approaches to write models transformations:

– using a General Purpose language (GPL) such as
Java+EMF

– using a DSL such as ATL, Kermeta, QVT, etc.

• Our approach: embedding a dedicated transformation
language in a GPL by using Tom

• Need of safe software for critical systems: checking all
steps of the development chain is mandatory. Therefore
it is important to write qualified models transformations.
Perspectives: use of the generated links model for verifica-
tion and specification purpose.

Use case: SimplePDLToPetriNet transformation

A Bstart2start

Proot

−→

Proot A B

tstart

pstarted

s2s

• Decomposition of the transformation into three
elementary transformations: ProcessToPetri-
Net, WorkDefinitionToPetriNet and Work-
SequenceToPetriNet

• Addition of intermediate elements to represent ele-
ments which may not have already been created

• Application of a Resolve strategy after all transfor-
mation steps

=

WorkDefinition + Process + WorkSequence + Resolve strategy:
pready

tstart

prunning pstarted

tfinish

pfinished

pready

tstart

prunning

tfinish

pfinished

pstarted

tstart

−→

Tom-EMF: manipulating EMF models with Tom

Tom-EMF is a mappings generator: it
takes a Java-EMF metamodel as input
and generates mappings which allow to
see an EMF model as a Tom term (a tree).

In addition, by using a dedicated
tool called EcoreIntrospector, Tom
strategies can be used to traverse and to
rewrite the model.

Extension of Tom

We propose to extend the Tom lan-
guage to be able to write eas-
ily models transformations such
as SimplePDLToPetriNet one by
adding an higher-level construct:
%transformation, composed of elemen-
tary transformations whose order is not
important.
Other constructs such as %tracelink and
%resolve allow us to maintain links be-
tween source and target elements during
the transformation. The generated links
model is used by a generated links resolu-
tion strategy at the end of the strategy. By
applying constraints on it (e.g. OCL), it
is also useful to verify a transformation.

Example of transformation code:
%transformation SimplePDLToPetriNet() :
simplepdl.ecore −> petrinet.ecore {

definition P2PN traversal ‘TopDown(P2PN()) {
p@Process[name=n, from=f] −> {
...
%tracelink(t_start:Transition,

‘Transition[name=‘n]);
...

}
}
definition WD2PN traversal ‘BottomUp(WD2PN()) {
wd@WorkDefinition[name=n] −> {
...
Process p = ‘wd.getParent();
Transition source =

%resolve(p:WorkDefinition,
t_start:Transition);

...
}

}
definition WS2PN traversal ‘TopDown(WS2PN()) {
ws@WorkSequence −> { ... }

}
}

Tom language
Tom is a language which extends gen-
eral purpose languages (C, C#, Caml,
Java, Python, etc.) by addings features:

• pattern-matching
• rewriting
• strategies
• mappings (representation of ex-

ternal data structures as algebraic
terms)

Tom code is written inside the Java
program and a Tom block may contain
Java code which may also contain Tom
code. The Tom compiler compiles Tom
constructs without parsing host code,
and dissolves them into the host lan-
guage.
Tom language implements the princi-
ple of Formal Islands as following:
public class Test {
%typeterm Person {
implement { Person }
is_sort(t) { t instanceof Person }

}
%op Person person(firstname:String,

lastname:String) {
is_fsym(t) { t instanceof Person }
get_slot(firstname,t) { t.getFirstname() }
get_slot(lastname,t) { t.getLastname() }
make(t0, t1) { new Person(t0, t1) }

}
public static void main(String[] args) {
Person subject = ‘Person("John","Doe") ;
%match(subject) {
Person(first,"Doe")-> { System.out.println(

"There is someone from Doe family:"+ ‘first ); }
...
}

}
}

http://tom.loria.fr


