
Linguistic Issues in Language Technology – LiLT
Submitted,

Modal Subordination in Type
Theoretic Dynamic Logic

Published by CSLI Publications





LiLT volume , issue

Modal Subordination in Type Theoretic
Dynamic Logic

Abstract
Classical theories of discourse semantics, such as Discourse Represen-
tation Theory (DRT), Dynamic Predicate Logic (DPL), predict that
an indefinite noun phrase can not serve as antecedent for an anaphor
if the noun phrase is, but the anaphor is not, in the scope of a modal
expression. However, this prediction meets with counterexamples. The
phenomenon modal subordination is one of them. In general, modal
subordination is concerned with more than two modalities, where the
modality in subsequent sentences is interpreted in a context ‘subordi-
nate’ to that created by the first modal expression. In other words, sub-
sequent sentences are interpreted as being conditional on the scenario
introduced in the first sentence. One consequence is that the anaphoric
potential of indefinites may extend beyond the standard limits of ac-
cessibility constraints.

This paper aims to give a formal interpretation on modal subordina-
tion. The theoretical backbone of the current work is Type Theoretic
Dynamic Logic (TTDL), which is a Montagovian account of discourse
semantics. Different from other dynamic theories, TTDL was estab-
lished on classical mathematical and logical tools, such as λ-calculus
and theory of types. Hence it is completely compositional and does
not suffer from the destructive assignment problem. We will review the
basic set-up of TTDL and then present Kratzer’s theory on natural lan-
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guage modality. After that, by integrating the notion of conversation
background, in particular, the modal base usage, we offer an extension
of TTDL (called Modal-TTDL) which properly deals with anaphoras
across modality. The relation between Modal-TTDL and TTDL will be
formally established as well.
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1 Modal Subordination

1.1 Dynamic Semantics

Around the middle of the last century, Alfred Tarski investigated the
semantics of formal languages by defining the notion of truth (Tarski,
1944, 1956). Later on in the 1970s, his student Richard Montague es-
tablished a model-theoretic semantics for natural language (Montague,
1970b,a, 1973) by using the mathematic tools of that time, e.g., higher-
order predicate logic, λ-calculus, type theory, intensional logic, etc. This
series of work is known as the Montague Grammar (MG), which renders
the possibility to interpret natural language, in particular English, as
a formal language. Under MG, the semantics of linguistic expressions
are interpreted in terms of their contributions to the truth conditions of
the sentences where they occur. This is recognized as the static view on
meaning. Despite its prevailing influence in the field of logical seman-
tics, MG was designed to account for the meaning of isolated sentences.
Thus, linguistic phenomena that cross sentence boundaries, such as
inter-sentential anaphora, donkey anaphora, presupposition, etc., lack
proper explanations in MG.

Since the 1980s, in order to overcome the empirical problems arising
from MG, a number of semantic theories have been established from the
discourse perspective. Representative works include Discourse Repre-
sentation Theory (DRT) (Kamp, 1981), File Change Semantics (FCS)
(Heim, 1982), and Dynamic Predicate Logic (DPL) (Groenendijk and
Stokhof, 1991). In contrast with classical logical semantics such as MG,
these theories are subsumed under the label dynamic semantics, where
the meaning of a linguistic expression is identified with its potential
to change the context, rather than the truth conditions. More specif-
ically, the meaning of a sentence is the change it brings about to an
existing discourse where it occurs; the meaning of a non-sentential ex-
pression equals its contribution to that change. In a slogan, meaning is
the “context change potential” (Heim, 1983). The notion of context
in dynamic semantics denotes what gets changed during the interpre-
tation. It is subject to the particular domain of research. For instance,
when analyzing anaphoric relations between noun phrases and pronom-
inal anaphors, the context resides in the discourse referents which have
been introduced, namely the objects being talked about, and the possi-
bilities that they are to be retrieved by anaphoric terms in subsequent
discourse.

Per contrast to static semantics, the above mentioned dynamic the-
ories manage to give an account for the inter-sentential anaphora and
donkey anaphora. At the same time, they help to constrain a number
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of infelicitous anaphoras as well. Take the following discourses:

(1) Bill doesn’t have a cari. *Iti is black. (Karttunen, 1969)

(2) a. *Either Jones owns a bicyclei, or iti’s broken.
b. Jane either borrowed a cari or rented a truckj to get to

Boston. *Iti/j broke down on the way. (Simons, 1996)

(3) Every mani walks in the park. *Hei whistles. (Groenendijk and
Stokhof, 1991)

As indicated in each example, all anaphoric relations are problem-
atic, and these anomalies can be rightly captured in dynamic seman-
tics. According to the classical dynamic frameworks, negation blocks
the accessibility of discourse referents within its scope, which explains
example (1); disjunction blocks the accessibility of discourse referents
from either disjunct, as well as from outside its scope, which explains
example (2); and implication admits the accessibility of discourse ref-
erents in the antecedent from the consequent, but not from outside its
scope, which explains example (3).

1.2 Anaphora under Modality
Although the well-established constraints in dynamic semantics can
account for a wide range of empirical data concerning the accessibility
of discourse anaphoras, there are a number of exceptional linguistic
examples, where the life-span of a discourse referent is longer than
expected. The perspective of this section is to sketch one specific case:
modal subordination, which is also the main problem that we are trying
to investigate in the current paper.

At first glance, modality has a similar effect as negation in blocking
discourse referent. That is to say, if an indefinite noun phrase (NP)
occurs in the scope of some modal operator, e.g., must, can, shall, etc.,
its discourse referent can not be anaphorically linked to expressions in
subsequent discourse. For instance:

(4) a. You must write a letteri to your parents. *They are expect-
ing the letteri.

b. Bill can make a kitei. *The kitei has a long string. (Kart-
tunen, 1969)

In the above discourses, neither of the anaphoric expressions: the
letter and the kite, can refer back to the corresponding indefinite NP.
That is because both indefinites are located in the complement clauses
governed by model auxiliaries, i.e., must in (4-a), can in (4-b). To ac-
count for examples as such in dynamic semantics, a basic strategy is to
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integrate two modal logic operators, namely the possibility operator 3
and the necessity operator 2, to the syntactic and semantic systems in
the original theories. Modal operators are treated in a similar way as
negation, which blocks discourse referent within its scope. We will not
go further on this point since it is not the focus of the current paper.

Despite the observation drawn from example (4), the following data
suggest that anaphoric references are not always impossible across
modality.

(5) If John bought a booki, he’ll be home reading iti by now. Iti’ll
be a murder mystery. (Roberts, 1989)

(6) A thiefi might break into the house. Hei would take the silver.
(Roberts, 1989)

In both above examples, the anaphoric expressions, namely the sec-
ond it in (5) and he in (6), are interpreted as depending on the indefi-
nites introduced under preceding modalities. This pair of examples are
different from (4) in the sense that the second sentences are not in the
factual mood, rather, they contain modals of their own. Further more,
in each case of (5) and (6), the modal in the second sentence is inter-
preted in a context ‘subordinate’ to that created by the first modal.
In other words, successive non-factual discourse is interpreted as be-
ing conditional on the scenario introduced in the first sentence. As to
examples of this sort, standard dynamic frameworks fail to give an ex-
planation. Because no discourse referent can survive outside the scope
of modal operators. This phenomenon, where the accessibility barriers
assumed in classical dynamic semantics are broken down by continuous
modals, is known as modal subordination (Roberts, 1987, 1989).

To account for examples such as (5) and (6), Roberts combines
Kratzer’s theory of modality and DRT, where the blocked discourse
referents are made available by repeating the whole sub-DRS into the
DRS of the subordinate modal. However, Robert’s approach is not
completely satisfactory. On the one hand, although this combination
is straightforward, it has to be accompanied with several constraints.
Otherwise, this approach, namely accommodation of antecedent, is but
too powerful to overgenerate and predict that all referents introduced
under modality will be accessible to subsequent discourse. On the other
hand, the classical theory DRT is often criticized of lacking composi-
tionality1. Further more, it suffers from the so-called destructive assign-
ment problem. Hence, we will try to resolve the modal subordination

1The notion of compositionality has been successfully integrated in some later
versions of DRT.
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problem based on a more recently proposed dynamic theory.

In the following section, you will find the introduction to the theoret-
ical foundation of the current paper, namely Type Theoretic Dynamic
Logic. Then in section 3, we present some preliminary notions on natu-
ral language modality, we shall also sketch a now classical theory about
modality on the linguistic perspective. Next, section 4 will be focused
on presenting our specific solution on modal subordination. Finally, in
the last section we will draw out some general conclusions and further
suggestions.

2 Type Theoretic Dynamic Logic

Around a decade ago, de Groote proposed a new dynamic framework
(de Groote, 2006), which we call Type Theoretic Dynamic Logic
(TTDL). This framework aims to study the semantics of sentence and
discourse in a uniform and orthodox way. In order to achieve dynamics,
TTDL integrates the notion of left and right contexts into MG: given a
sentence, its left context denotes the discourse that precedes it, namely
what has already been processed; its right context is the continuation
(Strachey and Wadsworth, 1974), denoting the discourse that follows
it, namely what will be processed in future. A sentence is interpreted
with respect to both its left and right contexts, and its semantics is
abstracted over the two contexts.

Technically, TTDL sticks to the tradition of MG. It only makes use of
standard mathematical and logical tools, such as λ-calculus and theory
of types. Logical notions such as free and bound variables, quantifier
scopes, are as usual. And the only operations involved are standard
α-conversions and β-reductions. This property enables it to inherit all
nice properties in the well-established mathematics and logics. In what
follows, we present the formal details of TTDL.

Akin to other systems based on the simply typed λ-calculus, the
syntax of TTDL can be defined in terms of the notion of higher order
signature (De Groote, 2001), which is a triplet consisting of a finite set
of atomic types, a finite set of constant symbols, and a function that
assigns each constant a type.

Definition 2.1. The signature of TTDL, in notation ΣTTDL, is defined
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as follows:
ΣTTDL = 〈{ι, o, γ},

{>,∧,¬,∃, :: , sel, nil},
{> : o,∧ : o→ o→ o,¬ : o→ o,

∃ : (ι→ o)→ o, :: : ι→ γ → γ,

sel : γ → ι, nil : γ}〉
Logical constants such as > (tautology), ∧ (conjunction), ¬ (nega-

tion) and ∃ (existential quantifier) are exactly the same as in First
Order Logic (FOL). However, besides the two atomic types in Church’s
simple type theory (Church, 1940): ι denoting the type of individuals,
o denoting the type of propositions, there is a third one in TTDL: γ de-
noting the type of left contexts. The right context, which is interpreted
as the continuation of the sentence, is a function from left contexts to
truth values. So its type is γ → o. For instance, assume e is a left-
context variable, then the empty right context can be defined in the
compact term stop as follows:

stop , λe.> (2.1)
In order to solve pronominal anaphora in TTDL, the left context is

modeled as a list of individuals. This explains the type of the empty
context “nil” in ΣTTDL. In addition to that, two operators are intro-
duced in definition 2.1. The first is the list constructor “::”. Its function
is to add new individuals (of type ι) into existing contexts (of type γ).
Hence the type of “::” is ι→ γ → γ. The second is the choice operator
“sel”, it takes a left context (of type γ) as argument and yields back an
individual (of type ι). Hence its type is γ → ι.

In standard truth-conditional semantics, a sentence expresses a
proposition, which is of type o. While in TTDL, a sentence will be
interpreted with respect to both its left and right contexts, which are
of type γ and γ → o, respectively. If we use s to denote the syntac-
tic category of sentences, notation J KTTDL to denote the semantic
interpretation under TTDL, then:

JsKTTDL = γ → (γ → o)→ o (2.2)
Discourses, which also express propositions, are interpreted in the

same way as single sentences. So, let d be the syntactic category of
discourses, we have:

JdKTTDL = γ → (γ → o)→ o (2.3)
In order to contrast with o, which is the type of (standard/static)
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propositions, we call γ → (γ → o) → o the type of dynamic proposi-
tions. Hereinafter, we will use Ω as an abbreviation for γ → (γ → o)→
o, namely:

Ω , γ → (γ → o)→ o (2.4)
After presenting the typing information in TTDL, let us proceed

to the logics of the framework. Let A and B be variables denoting
dynamic propositions, e and e′ be variables denoting left contexts, φ
be a variable denoting the right context, then the dynamic conjunction
∧dTTDL in TTDL, which conjoins two dynamic propositions, is defined
as follows:

∧dTTDL , λABeφ.Ae(λe′.Be′φ) (2.5)
In the above formula, e and φ are the left and right contexts of the

conjunction, they are also called the current left and right contexts.
Formula 2.5 can be further elaborated as follows. First of all, the se-
mantics of a conjunction is contributed by both conjuncts, this explains
why A and B are both involved in the composition. In addition, the
left context of the first conjunct is the current left context, this is why
e is passed to A; the right context of the second conjunct is the current
right context, this is why φ is passed to B. Finally, the right context
of the first conjunct is made up of the second conjunct and the current
right context, this explains why λe′.Be′φ is passed to A; the left con-
text of the second conjunct is made up of the first conjunct and the
current left context, this explains why e′, which forms a λ-abstraction
and will be substituted by a complex structure of type γ (consisting of
e and information in A), is passed to B.

In order to negate dynamic propositions, TTDL defines the dynamic
negation operator ¬dTTDL as follows:

¬dTTDL , λAeφ.¬(A e stop) ∧ φe (2.6)
where stop was defined in formula 2.1. The operator ¬dTTDL takes a
dynamic proposition A and returns its dynamically negated counter-
part, hence it is of type Ω→ Ω. The right hand side of formula 2.6 can
be further understood as follows. Firstly, the left context of the to-be-
negated proposition A is the current left context, this is why e is passed
to A. Further more, we do not want negation to take scope over any
future part of the discourse, so the empty right context stop, rather
than the current right context φ, is passed to A. Finally, a dynamic
negation does not have the potential to update the left context, this is
why φe, the function-application of the original left and right contexts,
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appears as a conjunct at the end of the formula.
As to the dynamic existential quantifier in TTDL, it is defined as:

∃dTTDL , λPeφ.∃(λx.Px(x :: e)φ) (2.7)
The dynamic quantifier ∃dTTDL takes a dynamic property P of type

ι → Ω, and returns a existentially quantified dynamic proposition.
Hence the semantic type of the operator ∃dTTDL is (ι → Ω) → Ω.
The right hand side of formula 2.7 can be understood as follows. In an
existentially quantified dynamic proposition, variables which are bound
by the existential quantifier shall update the current left context, this
is why the updated context (x :: e) is passed to the proposition within
the scope of ∃.

Above we have presented the dynamic logic in TTDL, in particular,
the definitions of the dynamic operators. In fact, there exists a system-
atic translation, which associates (standard/static) logical expressions
to their dynamic counterparts. The translation process is concerned
with both types and λ-terms, which will be examined one by one be-
low.

Notation 2.1. We use the bar notation, for instance, τ orM , to denote
the dynamic translation of a type τ or a λ-term M in TTDL.

Definition 2.2. The dynamic translation of a type τ : τ , is defined
inductively as follows:

1. ι = ι;
2. o = Ω;
3. σ → τ = σ → τ , where τ and σ are types.

According to definition 2.2, the static and dynamic types of individ-
uals are both ι, while the static and dynamic type of propositions are
o and Ω, respectively. The dynamic translation of a function type is
still a function type, with the argument type and the result type being
translated respectively.

The dynamic translation of λ-terms will ground on the following
two functions: the dynamization function D and the staticization func-
tion S, whose definitions are mutually dependent. They will be used to
translate non-logical constants.

Definition 2.3. The dynamization function Dτ , which takes an input
λ-term A of type (γ → τ), returns an output λ-term A′ of type τ ; the
staticization function Sτ , which takes an input λ-term A′ of type τ ,
returns an output λ-term A of type (γ → τ).
Dτ is defined inductively on type τ as follows:
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1. DιA = A nil;

2. DoA = λeφ.(Ae ∧ φe);
3. Dα→βA = λx.Dβ(λe.Ae(Sαxe)).

Sτ is defined inductively on type τ as follows:

1. SιA′ = λe.A′;

2. SoA′ = λe.A′ e stop;

3. Sα→βA′ = λe.(λx.Sβ(A′(Dα(λe′.x)))e).

Now based on definition 2.3, we can proceed to the dynamic trans-
lation of λ-terms.

Definition 2.4. The dynamic translation of a λ-term M (of type τ):
M , which is another λ-term of type τ , is defined as follows:

1. x = x, if x is a variable;

2. a = Dτ (λe.a), if a is a non-logical constant and a : τ ;

3. ∧ = ∧dTTDL, see formula 2.5;

4. ¬ = ¬dTTDL, see formula 2.6;

5. ∃ = ∃dTTDL, see formula 2.7;

6. (MN) = (M N);

7. (λx.M) = (λx.M).

The dynamic counterparts of the derived operators, such as ∨ (dis-
junction), → (implication), and ∀ (universal quantifier), are defined in
terms of primitive logical constants and the corresponding rules in def-
inition 2.4. Since the semantics of TTDL is almost the same as the one
of FOL, we will not dig into that. Illustrations of TTDL will not be
presented here for reasons of space. For more examples, please refer to
(de Groote, 2006) and (Lebedeva, 2012).

With the above set-up, TTDL manifests the same empirical coverage
on discourse anaphora as other dynamic frameworks, such as DRT and
DPL. In the following section, we will first discuss modality in more
detail from the linguistic perspective. Then we will present the theory
of modality developed by Angelika Kratzer (Kratzer, 1977, 1981, 1986,
1991). After that in section 4, we shall combine Kratzer’s theory of
modality with TTDL, yielding an adaptation of TTDL called Modal
TTDL (M-TTDL), which treats the modal subordination problem in
traditional montagovian style. A formal link between the new adapta-
tion and TTDL will be established as well.
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3 Preliminary Notions on Modality
3.1 Modality in Natural Language Semantics
Generally speaking, modality is a semantic notion which is concerned
with possibility and necessity. In linguistics, modality enables people to
talk about things beyond the actual here and now (von Fintel, 2006). It
is reflected on the set of phenomena where notions such as belief, atti-
tude and obligation are attached to natural language sentences. Modal-
ity, which has been pervasively attested across almost all languages, can
be established by a wide range of grammatical categories and construc-
tions. Take English for example, there are modal auxiliaries (e.g., must,
may, should, might), modal adjective and adverbs (e.g., it is possible
..., possibly, necessarily, probably), conditionals (e.g., if ... then ...),
propositional attitude verbs (e.g., believe, know, hope), etc.

One aspect of the semantics of modality is modal force, namely
the strength of a modal, i.e., possibility and necessity. The two cor-
responding operators are treated as quantifiers ranging over possible
worlds: 3 as existential, 2 as universal. Because of that, possibility
and necessity are also called existential force and universal force
(respectively). The force of a modal expression is inherently contained
in its lexical meaning. For instance, modals such as may, might and
could always denote a possibility; while modals such as must, should
and would always denote a necessity one.

Another aspect on the semantics of modality is modal flavor, it
indicates the particular sort of premise information, e.g., epistemic,
deontic, etc., with respect to which a modal is interpreted. This no-
tion is motivated by the fact that it is insufficient to interpret modal
expressions only relative to their modal forces. According to modal fla-
vor, modalities can be classified into different sub-types. Let’s take the
following sentences for example, where the modal is considered to be
ambiguous:

(7) a. All Maori children must learn the names of their ancestors.
b. The ancestors of the Maoris must have arrived from Tahiti.

(Kratzer, 1977)

Both (7-a) and (7-b) contain the same modal must, so each of them
expresses a universal force. However, the meaning of must varies from
one sentence to another. For instance, in (7-a), the modal must refers
to an obligation or a duty that the Maori children should obey or fulfill,
it is called a deontic modality; in (7-b), the same modal denotes some
knowledge or belief, it is called an epistemicmodality. This distinction
can be revealed in an explicit way by paraphrasing (7) as follows, where
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an in view of ... adverbial phrase is added at the beginning of each
sentence:

(8) a. In view of what their tribal duties are, the Maori children
must learn the names of their ancestors.

b. In view of what is known, the ancestors of the Maoris must
have arrived from Tahiti. (Kratzer, 1977)

The modal must in (7-a) means “necessary in view of what their
tribal duties are”; while must in (7-b) means “necessary in view of what
is known”. A similar contrast can be found in the following examples:

(9) a. According to his dating coach, John must dance at parties.
b. Since John hangs out with Linda at parties, he must dance

at parties. (Starr, 2012)

By barely looking at the modalized sentence John/he must dance at
parties, which is shared by both discourses in (9), we are not able to
tell whether it refers to an obligation (deontic), or a piece of knowledge
(epistemic), or maybe something else. However, with the help of the
prefixed adverbial phrases in (9), we can unambiguously determine that
the shared modalized sentence expresses a deontic modality in (9-a),
while it expresses an epistemic one in (9-a).

Actually, besides the deontic and epistemic modality as we have
shown in the above examples, there are also other types of modality that
a modal expression can express, such as bouletic (wishes or desires),
teleological (goals), circumstantial (circumstances), etc., all of which
are called the flavor of a modal2. For instance, all the following examples
involve the same modal expression have to, which denotes different
modalities:

(10) a. It has to be raining. [after observing people coming inside
with wet umbrellas; epistemic modality]

b. Visitors have to leave by six pm. [hospital regulations; de-
ontic]

c. You have to go to bed in ten minutes. [stern father;
bouletic]

d. I have to sneeze. [given the current state of one’s nose;
circumstantial]

e. To get home in time, you have to take a taxi. [telelological]
(von Fintel, 2006)

2The names of these different flavors may vary from author to author.
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For more examples, please refer to (Kratzer, 1977, Portner, 2009).
Different from the modal force, which solely comes from the lexical
meaning of a modal, the modal flavor depends on the specific situation
where the modal is applied. Sometimes, it is given by linguistic means,
where there are noticeable indicators such as the adverbial phrases in
view of ... and according to ... in (8) and (9); most of the time however,
no indicators are explicitly presented, then the readers have to resolve
the most appropriate flavor based on clues from the context of use, for
instance, as in (7) and (10).

In order to interpret modal expressions in formal systems such as
Modal Predicate Logic (MPL), we need to correctly handle both above
mentioned semantic aspects. The treatment of modal force is relatively
straightforward: 3 is the existential quantifier over possible worlds, 2 is
the universal quantifier over possible worlds. As to modal flavor, what
we can do is to assign each different modal a different set of possible
worlds which it quantifies over. In other words, to associate each modal
a corresponding accessibility relation3. However, from a generalization
point of view, this strategy is not satisfactory enough. In the next
section, we will sketch Kratzer’s theory on modality, which aims to
give a unified analysis on different types of modality (e.g., epistemic,
deontic, bouletic, etc.).

3.2 Kratzer’s Theory of Modality
Up until now, Kratzer’s theory of modality (Kratzer, 1977, 1981, 1986,
1991) is the most studied work in this field. Also, it has been serving as
the foundation for a large number of subsequent works on modality. One
of the most essential motivations of Kratzer is to tackle the problem
of lexical ambiguity among modals, providing a uniform treatment to
modals of various modal forces.

In her theory, Kratzer proposes that modals are context-dependent,
rather than ambiguous between various flavors. As we mentioned be-
fore, the must in examples (7-a) and (7-b) means “necessary in view of
what their tribal duties are” and “necessary in view of what is known”,
respectively. However, if we understood modal in this way, the ad-
verbial phrases as in examples (8) and (9) would be redundant, since
modals carry all the necessary information, while this is not the case.
So Kratzer’s strategy is to make a clear-cut division on the two aspects
of modal semantics that we presented above, that is to say, the force
of a modal is all its meaning. As to the flavor, which is not part of the

3The accessibility relation is a binary relation in possible world semantics
(Kripke, 1959, 1963), denoting the possibility to reach a possible world from an-
other.
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meaning of a modal any more, is fixed by the context. We will explain
this in more detail below.

A modal sentence, as far as Kratzer concerns, is interpreted in a
modular way such that it consists of three parts: a neutral modal
operator, a background context, and a proposition under discussion.
The last parameter is relatively easy to understand, it is the proposition
governed by the corresponding modal operator. The modal operator,
which is uniquely determined by the modal expression, is neutral in
the sense that it only denotes the modal force, namely, whether it is
existential or universal. The background context is the foundation for
the uniform interpretation of various types of modality. It indicates the
particular flavor that a modal is applied to. In other words, it restricts
the domain of worlds which modal operators quantify over.

In order to model the background information, Kratzer proposes the
notion of conversational background. Generally speaking, a conver-
sational background stands for the entity denoted by adverbial phrases
such as in view of and according to. It provides a particular premise,
with respect to which a modal sentence will be evaluated. This premise
can be formalized as a set of propositions (knowledges or obligations),
and it is sensitive to the world. For instance, take the epistemic con-
versational background in view of what is known in (7-b), it gives a set
of propositions known at the utterance world, which are different from
world to world (people may know different things in different world).
Analogously, take the deontic conversational background according to
his dating coach in (9-a) for example, it supplies a set of commands
from the coach that John should follow, which also differ from world
to world. We formalize conversational background as follows:

Definition 3.1. A conversational background is a function from pos-
sible worlds to sets of (modal) propositions.

For instance, assume f is a conversational background, W is a set
of possible worlds, w ∈W is a possible world, then f(w) = {φ1, φ2, ...}
is a set of propositions which contributes the background information
at w. In other words, all propositions in f(w), namely φ1, φ2, ..., are
necessarily true4 at w. The notion of conversational background closely
correlates to the accessibility relation in possible world semantics. In
fact, the former can be used in place of the latter for defining the
semantics of modals. Please refer to (Portner, 2009) for more details.

As a summary, Kratzer’s theory as we have presented so far, is a con-
textualized version of the standard modal logic such as MPL, it is called

4Whether φ1, φ2, ... are knowledges, or obligations, or goals, depends on the
particular type of the conversational background f .
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the relative modality. Different readings of a modal expression are
reduced to the specification of a single modal force, together with vari-
ous context-dependent conversational backgrounds. Hence we are able
to interpret modals in a uniquely unambiguous way. Also, correlated
notions such as the accessibility relation, together with its properties,
can be recast in terms of conversational background correspondingly.

However, in natural language, modality is not a dichotomy of plain
possibility and necessity, it is a graded concept and can be compared
between one another, for instance, there are other modal forces such as
good possibility, slight possibility, etc. Here are some specific linguistic
examples:

(11) a. It is barely possible to climb Mount Everest without oxy-
gen.

b. It is easily possible to climb Mount Toby.
c. They are more likely to climb the West Ridge than the

Southeast Face.
d. It would be more desirable to climb the West Ridge by the

Direct Route. (Kratzer, 1991)

In a relative modality, possibility is defined as an absolute concept.
However, in order to account for example (11), we need tune modality
in a scalable fashion. Hence, Kratzer proposes that modal expressions
should be interpreted with respect to two conversational backgrounds:
one, as we introduced above, is called the modal base, it provides the
background information, namely a set of accessible worlds; the other
is called the ordering source, which imposes an ordering on the ac-
cessible worlds, i.e., some worlds are more accessible than others. This
machinery will not only resolve the problem of graded modality, but
also cope with a series of other modality-related problems (Kratzer,
1991, Schoubye, 2011), such as the inconsistencies, conditionals, etc.
In this paper, we will sidestep the ordering source, and only consider
the modal base usage of conversational background. Interested readers
may refer back to the original reference for more information (Kratzer,
1981).

4 Modal Subordination under TTDL
In this section, we will integrate epistemic modality within the continuation-
based dynamic framework TTDL as introduced earlier in section 2, we
will call the new framework Modal TTDL (M-TTDL). As explained
in section 3.2, a conversational background is a function from possible
worlds to sets of propositions, which are the ones that are necessarily
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true at the given world. They serve as the common ground infor-
mation, or premise assumption, for subsequent modally subordinated
utterances. Hence our strategy for achieving M-TTDL is to enrich
the context of TTDL with the notion of conversational background
(Kratzer, 1981), in particular the modal base.

In the following, we will first present the formal framework, includ-
ing the particular signature for M-TTDL, and the typing informations,
such as the way in which (modal) proposition, left context, right con-
text, etc., are respectively interpreted; then we will define some prelimi-
nary functions that facilitate future presentation; after that, we propose
the formal framework, including the syntax and semantics; finally, the
lexical entries, together with the treatments of some puzzling examples
will be provided.

4.1 Formal Framework
Same as its ancestor system TTDL, the adaptation M-TTDL is also a
framework based on the simply typed λ-calculus. For all the formal de-
tails, please refer back to section 2. Below, we shall specify the signature
of M-TTDL in detail.

Since M-TTDL is concerned with the notion of possible world, which
is missing in TTDL, we need a different signature from the previous
one (see definition 2.1). Types and constants that are correlated with
possible worlds ought to be incorporated in M-TTDL. As a result, we
keep the two conventional ground types in M-TTDL: ι for individuals,
and o for truth values. Besides, a third primitive type s is employed for
possible worlds. As to γ, which is the type denoting lists of discourse
referents, is abandoned because the context in M-TTDL will contain
propositions (the modal base) rather than variables. In the following,
we provide a formal characterization of the new signature. Please note
that only the types of logical constants are specified. The particular
type of a non-logical constant will be indicated when it is employed.
Definition 4.1. The signature ΣM-TTDL is defined as follows:

ΣM-TTDL = 〈{ι, o, s}, {>,∧,¬, ∃ι , ∃s , sel,H},
{> : o,∧ : o→ o→ o,¬ : o→ o, ∃ι : (ι→ o)→ o,

∃s : (s→ o)→ o, sel : (ι→ o)→ o→ ι,H : s}〉
Now let’s take a close look at the logical constants. On the first

place, we abandon in ΣM-TTDL the familiar list constructor :: and
the empty list of referents nil, because the left context in M-TTDL is
made up of propositions (the modal base), rather than variables. In ad-
dition, with respect to the modification on the left context, the choice
operator sel is also changed accordingly. In previous systems, it is used
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to pick up a variable from a list of referents (of type γ → ι). But in
M-TTDL, it will do the same job with respect to an input property (of
type ι→ o) and the current modal base (of type o). The former is the
criteria based on which sel makes its decision. This explains the seman-
tic type of sel as defined in ΣM-TTDL. Further more, we distinguish
between the quantifier over individuals ∃ι and the one over possible
worlds ∃s . Their difference are revealed from their corresponding types.
Some other conventional logical constants, such as → (implication), ∨
(disjunction), ∀ (universal quantifier), are defined same as before in
terms of the above primitives. Please note that corresponding to the
two existential quantifiers, there are also a pair of universal quantifiers:
∀ι and ∀s , the former ranges over individual variables, the latter over
possible world variables. Finally, the possible world constantH denotes
the current world. It will be used to provide the world of evaluation at
the end of the semantic interpretation.

For the rest of this subsection, we will focus on the typing informa-
tion in M-TTDL. The way to interpret left context, right context, and
propositions will be elucidated sequentially. As we mentioned above, ι
and o are still the types for individuals and truth values, respectively.
However in modal systems, such as MPL, a (modal) proposition is in-
terpreted as a set of possible worlds, rather than a truth value. Hence
its type should be s→ o. Hereinafter, we abbreviate it as oi, namely:

oi , s→ o (4.1)

Correspondingly, the semantic type of 1-place predicates, such as
man and walk in, is updated to ι→ oi; the type of 2-place predicates,
such as beat and eat, is updated to ι→ ι→ oi.

To explain the interpretation of the left context, we first propose the
concept of environment. It is an ordered pair consisting of two modal
propositions: the background information and the base informa-
tion. The purpose of an environment is twofold: on the one hand, it
encodes the propositions necessarily true at the given world, which is
the background information; on the other hand, it enables to pass up-
dated propositions from a possible world to accessible ones, which is the
base information. Both the background and the base are propositions,
they are hence of type oi. As a result, the type of an environment is
(oi × oi). If we use Tenv, Tbk, and Tba to denote the type of environ-
ment, background, and base, respectively, we can draw the following
formulas:

Tbk = Tba = oi
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Tenv = Tbk × Tba = oi × oi
Based upon the notion of environment, we thus define another con-

cept: generalized environment, which is in parallel with the con-
versational background in Kratzer’s theory. As we know, the conversa-
tional background is a function from possible worlds to sets of propo-
sitions (or equivalently, the conjunction consisting of all propositions).
Analogously, the generalized environment is a mapping from possible
worlds to environments. This means if we apply a generalized envi-
ronment to a particular world, it will yield the environment at that
world. Consequently, if we use Tgenv to denote the type of generalized
environments, it can be represented as follows:

Tgenv = s→ Tenv

In fact, the generalized environment can be regarded as an enhanced
version of the conversational background. By applying it to a possible
world argument, we obtain a pair of (modal) propositions. The first
element, namely the background proposition, is exactly equivalent to
the current modal base: it is the conjunction of all propositions that are
necessarily satisfied/recognized at that possible world. And the back-
ground can be incrementally updated during the discourse processing,
when new logical contents/propositions which are necessarily true in
that world are provided. The second element of the pair, namely the
base proposition, serves as a “buffer”: appearing in the form of a con-
junction as well, it consists of the propositions to be updated to accessi-
ble worlds. Its content will be reset after the updating in order to avoid
information duplication. An illustration will be provided in section 4.6.

Besides environment and generalized environment, we need to in-
troduce the concept of the salient world, or equivalently, the world
of interest, for the process of discourse incrementation. Its purpose is
to record the current position of the processing in the overall possible
worlds hierarchy, this will determine in which world the propositions
expressed by subsequent utterances are to be integrated. Note that this
is different from the world of evaluation (the world where the sentence
is uttered) in possible world systems such as MPL.

With the above notions, we establish the left context in M-TTDL
by encapsulating the salient world and the generalized environment in
an ordered pair. By convention, we use γi to symbolize the type of left
context, then:

γi , s× Tgenv (4.2)
If we unfold γi with all primitive types, we will obtain the following
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typing information:

γi = s× (s→ Tenv)

= s× (s→ (oi × oi))
= s× (s→ ((s→ o)× (s→ o)))

(4.3)

Same as in TTDL, the right context in M-TTDL is interpreted as a
function from left contexts to (modal) propositions, hence its semantic
type is γi → oi. Similarly, if we unfold it, we will obtain:

γi → oi = (s× Tgenv)→ oi

= (s× (s→ Tenv))→ oi

= (s× (s→ (oi × oi)))→ oi

= (s× (s→ ((s→ o)× (s→ o))))→ (s→ o)

Accordingly, a dynamic proposition in M-TTDL is interpreted as a
function which takes a left context and a right context, and returns a
(modal) proposition. Both sentences and discourses will be treated in
the same manner. Assume s and d are syntactic categories of sentences
and discourses, respectively, then:

JsK = γi → (γi → oi)→ oi (4.4)

JdK = γi → (γi → oi)→ oi (4.5)
Again, we abbreviate the complex type with a compact term Ωi,

namely:

Ωi , γi → (γi → oi)→ oi (4.6)
By unfolding formula 4.6, we can obtain the following result:

Ωi = γi → (γi → oi)→ oi

= (s× Tgenv)→ ((s× Tgenv)→ oi)→ oi

= (s× (s→ Tenv))→ ((s× (s→ Tenv))→ oi)→ oi

= (s× (s→ ((s→ o)× (s→ o))))→
((s× (s→ ((s→ o)× (s→ o))))→ (s→ o))→
(s→ o)

(4.7)

As we may observe from formula 4.7, the type of dynamic proposi-
tions in M-TTDL is rather complicated, particularly it involves a num-
ber of occurrences of possible worlds (of type s) in different positions.
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However, by looking at the folded form, i.e., formula 4.6, it is clearly a
member of the continuation semantic family.

Up until now, we have presented the typing information in M-TTDL.
In what follows, we will first introduce some functions which are con-
cerned with the modal base, possible worlds, and correlated concepts.
They are cornerstones for our future presentation. Afterwards, we will
provide the dynamic logic in M-TTDL, as well as the systematic dy-
namic translation.

4.2 Elementary Functions
In this subsection, we will introduce some fundamental functions which
are concerned with the above introduced concepts such as environment,
generalized environment, context, etc. These functions shall be pre-
sented in various groups, based on the particular semantic object they
are working on. They will largely be used to construct lexical entries,
which we will see in the succeeding subsection.

Modalized Logical Constants
First of all, let’s first have a look at a set of modalized logical con-
stants, which are defined in terms of the constants in the signature
ΣM-TTDL (definition 4.1). These terms will save space and provide a
better readability in subsequent function definitions.. Modal conjunction5: oi → oi → oi

∧i , λABi.(Ai ∧Bi) (4.8)
The operator ∧i is the modal counterpart of ∧. It takes two modal

propositions as input, and returns another modal proposition, which
is the conjunction consisting of the logical contents in the input.. Modal negation: oi → oi

¬i , λAi.¬(Ai) (4.9)
The operator ¬i is the modal counterpart of ¬. It takes a modal

proposition as input, and returns its modal negation.. Modal existential quantifier for individuals: (ι→ oi)→ oi

∃ι i , λPi. ∃ι (λx.Pxi) (4.10)
The operator ∃ι i is the modal counterpart of ∃ι . It takes a modal

5This is the description of the function, which is followed by its correspond-
ing semantic type. In subsequent function introductions, we will stick to the same
notation.
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individual property (of type ι → oi) as input, and returns an exis-
tentially quantified modal proposition.. Modal tautology: oi

>i , λi.> (4.11)
The tautology > is of type o, it always denotes the truth value

1. Its counterpart in modal systems: >i, which returns 1 at each
possible world, is of type oi.

Environment and Salient World Manipulation
After the functions on modal propositions, let’s turn to the ones which
deal with salient world and environment.. Retrieve the salient world: γi → s

woi , λe.π1e (4.12)

The function woi is relatively straightforward. It takes a left con-
text e as input and returns its salient world, which is simply the first
projection of e.. Retrieve the generalized environment: γi → Tgenv

genv , λe.π2e (4.13)
Contrast to the previous function woi, the function genv takes a

left context e and returns its generalized environment, which corre-
sponds to the second projection of the input e.. Retrieve the environment: γi → s→ Tenv

env , λei.(genv e i) (4.14)
The function env is established upon genv (formula 4.13). It takes

a left context and a possible world, and returns a specific environ-
ment at the input world.. Modify the salient world: γi → s→ γi

change woi , λei.〈i, (genv e)〉 (4.15)

The function change woi takes a left context e and a possible
world i as input. It yields a new left context, where the salient world
is modified to the input world i, the generalized environment is the
one of the input left context.. Retrieve the background: γi → s→ oi

bkgd , λei.π1(env e i) (4.16)
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The function bkgd takes a left context e (a Cartesian product
consisting of a salient world and a generalized environment) and a
possible world i as input. It yields a modal proposition, which is the
background (the first element of the environment) of the left context
e at the given world i.

. Retrieve the base: γi → s→ oi

base , λei.π2(env e i) (4.17)

The function base takes a left context e (a Cartesian product
consisting of a salient world and a generalized environment) and a
possible world i as input. It yields a modal proposition, which is the
base (the second element of the environment) of the left context e
at the given world i.

Context Manipulation
In this subsection, we will see the functions which manipulate general-
ized environments and contexts. First, we define the following notation:

Definition 4.2. Let w,w′ ∈ W be possible worlds, G a generalized
environment, E an environment, R the accessibility relation. The no-
tation G[w := E] stands for a generalized environment such that:

G[w := E](w′) =

{
E if R(w,w′),

G(w′) otherwise.

As indicated in definition 4.2, G[w := E] is itself a generalized envi-
ronment, whose interpretation relies on the input possible world argu-
ment. If the input world is accessible to w, then environment E will be
returned, otherwise, the generalized environment G is applied to the
input world. The presentation of the following functions will base on
the above notation.

. Update the generalized environment: Tgenv → s→ Tenv → Tgenv

up genv , λGiE.G[i := E] (4.18)

The function up genv takes three arguments as input:
1.A generalized environment G, which is of type Tgenv;
2.A possible world i, which is of type s, it denotes the target
world at which the generalized environment is to be updated;

3.A to-be-updated environment E, which of type Tenv.
It thus yields another generalized environment, namely G[i := E].
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. Update the left context: γi → s→ oi → γi

up context , λeiA.〈(woi e),
up genv

(genv e)
i

〈A ∧i (bkgd e i), A ∧i (base e i)〉
〉

(4.19)

The function up context takes three arguments as input:

1.A left context e, which is of type γi;
2.A possible world i at which the update process takes place, it
is of type s;

3.A modal proposition A, which is the to-be-updated logical con-
tent, it is of type oi.

It yields an updated left context, with the logical content of the
modal proposition A added in both the background and the base of
e at world i.

. Copy the left context: γi → s→ s→ γi

copy context , λeij.〈(woi e),
up genv

(genv e)
j

(env e i)
〉

(4.20)

The function copy context takes a left context e and two pos-
sible worlds i and j as input. It yields a left context, which has the
same salient world as the input left context, but the original envi-
ronment at world i will be copied to all worlds that are accessible
from j.
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. Reset the base in a left context: γi → s→ γi

reset base , λei.〈(woi e),
up genv

(genv e)
i

〈(bkgd e i),>i〉
〉

(4.21)

During the discourse processing, we will have to reset the base
at various steps (particularly, when the proposition in the base has
already been used) in order to avoid information duplication. The
above function reset base helps to achieve this goal. Basically,
reset base takes a left context e and a possible world i as input. It
yields another left context, which contains the same salient world,
and a modified generalized environment, where the base information
is reset.. The empty left context: γi

nili , 〈H, λi.〈>i,>i〉〉 (4.22)
The term nili represents the void left context in M-TTDL. It is

a context at the current world H, and both background and base
propositions in the environment are the modal tautology >i. It is
similar to the nil in TTDL.. The empty right context: γi → oi

stopi , λe.>i (4.23)
Analogous to the term stop (formula 2.1) in previous frameworks,

the above term stopi is an empty right context in M-TTDL. It takes
a left context as input, no matter what its value is, it always returns
the modal tautology >i. As discussed in section 4.1, the way that the
context is unfolded is rather complex in M-TTDL. Thus at the end of
the discourse processing, stopi may be employed together with nili
in order to obtain a more concise and compact logical representation.
We will see its application in section 4.6.

4.3 Dynamic Translation
In this subsection, we will continue with the formal details of M-TTDL,
focusing on the dynamic logic and the systematic dynamic translation.

First of all, as we explained before, M-TTDL parallels TTDL in the
aspect of the way to interpret sentences and discourses: both of them
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are functions from left contexts to right contexts to propositions. By
contrasting formulas 2.2, 2.3 with 4.4, 4.5, we may see that in TTDL, its
type is γ → (γ → o)→ o, while in M-TTDL, it is γi → (γi → oi)→ oi
(the types of the latter are indexed with i because the notion of pos-
sible world is incorporated). Because of that, as the default connective
between sentences in a discourse, the dynamic conjunction in M-TTDL
is defined exactly the same as in TTDL:

∧dM-TTDL , λABeφ.Ae(λe′.Be′φ) (4.24)
In order to negate a dynamic proposition in M-TTDL, we propose

the following negation operator:

¬dM-TTDL , λAeφ.¬i(A e stopi) ∧i φe (4.25)
When a proposition is negated, its context change potential will be

restrained. This explains the modalized empty continuation stopi in
the above definition. It prevents the information in the left context to be
updated in future discourse. Contrasting ¬dM-TTDL (formula 4.25) with
¬dTTDL (formula 2.6), we see that the two operators are in a completely
similar structure, except for that the logical constants in ¬dTTDL (i.e.,
¬, > and ∧) are substituted by their modal counterparts in ¬dM-TTDL

(i.e., ¬i, >i and ∧i).
For the dynamic existential quantifier (the one which ranges over

individual variables) in M-TTDL, we propose the following definition:

∃ι d
M-TTDL , λPeφ.( ∃ι i(λx.Pxeφ)) (4.26)

Compared with its predecessor ∃dTTDL (formula 2.7), the job of
∃ι d
M-TTDL is less crucial. The quantifier ∃ι d

M-TTDL does not update
variables to the left context, because the structure of the left context
is totally changed. In M-TTDL, the left context consists of proposi-
tions rather than invididuals. For more discussion, please refer back to
section 4.1.

Based on the above analysis, we will now present the systematic
dynamic translation in M-TTDL. To distinguish the translations in
M-TTDL from the previous one in TTDL, we introduce the m-bar
notation.

Notation 4.1. We use the m-bar notation, for instance, τm or M
m
,

to denote the dynamic translation of a type τ or a λ-term M in
M-TTDL.

The dynamic translation of types in M-TTDL is in a parallel struc-
ture with the ones in TTDL. One may compare the following definition
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with definitions 2.2.

Definition 4.3. The dynamic translation of a type τ ∈ T : τm, is
defined inductively as follows:

1. ιm = ι;
2. oim = Ωi;
3. σ → τm = σm → τm, where τ, σ ∈ T .
The detailed unfolding of Ωi can be found in formula 4.7. Again,

for the dynamic translation of λ-terms, we need to define the two func-
tions: Dm and Sm, which will be used to translate non-logical constants.
These two function in M-TTDL are slightly different from their previ-
ous versions in TTDL (definition 2.3).

Definition 4.4. The dynamization function Dmτ , which takes an
input λ-term A of type (γi → τ), returns an output λ-term A′ of type
τm; the staticization function Smτ , which takes an input λ-term A′ of
type τm, returns an output λ-term A of type γi → τ . In the following
formulas, e denotes a variable of type γi.. Dmτ is defined inductively on type τ as follows:

1.Dmι A = A nili;
2.DmoiA = λeφi.(Aei ∧ φ(up context e i (Ae))i);
3.Dmα→βA = λx.Dmβ (λe.Ae(Smα xe)).. Smτ is defined inductively on type τ as follows:
1.Smι A′ = λe.A′;
2.SmoiA

′ = λe.A′ e stopi;
3.Smα→βA′ = λe.(λx.Smβ (A′(Dmα (λe′.x)))e).

In the previous framework TTDL, the change of context is achieved
through the dynamic existential quantifier (formulas 2.7). However,
since the left context is interpreted differently in M-TTDL, the function
Dm
oi is designed in a way such that it changes the current left context

by inserting the dynamized modal proposition into the environment.
For more discussions on the general cases of Dm and Sm, please refer
back to section 2. Below, we present the dynamic translation of λ-terms
in M-TTDL, which is similar to that in TTDL as well. Compare the
following definition with definitions 2.4:

Definition 4.5. The dynamic translation of a λ-term M (of type
τ): M , which is another λ-term of type τ , is defined as follows:

1. xm = x, if x ∈ X ;
2. am = Dmτ (λe.a), if a ∈ CNL;
3. ∧m = ∧dM-TTDL, see formula 4.24;



Modal Subordination in Type Theoretic Dynamic Logic / 27

4. ¬m = ¬dM-TTDL, see formula 4.25;

5. ∃m = ∃ι d
M-TTDL, see formula 4.26;

6. (MN)
m

= (M
m
N

m
);

7. (λx.M)
m

= (λx.M
m

).

For the dynamic translation of other logical constants such as ∨
(disjunction), → (implication), and ∀ (universal quantifier), we can
apply the corresponding rules in definition 4.5 to their derived terms.
Take implication for instance:

A→ B
m

= ¬(A ∧ ¬B)
m

= ¬m(A
m∧m(¬mBm

))

= ¬dM-TTDL(A
m ∧dM-TTDL (¬dM-TTDLB

m
))

�β λeφ.¬i(A
m
e(λe′.¬i(B

m
e′ stopi))) ∧i φe

(4.27)

As to the semantics of M-TTDL, it follows from TTDL, which is also
the same as in FOL, we shall not discuss that any further. The rest of
this section is organized as follows. In the next subsection, we will
provide the specific lexical entries around modality, which are mainly
established based on the functions introduced in section 4.2. Then in
section 4.5, we will focus on the relation between M-TTDL and TTDL:
they are proved to have the same empirical predictions when no modal-
ity is concerned. Finally, applications of M-TTDL will be illustrated
with specific linguistic examples in section 4.6.

4.4 Lexical Entries for Modals
Based on the above analysis, in particular the fundamental functions
in section 4.2, we will propose the core of M-TTDL in this subsec-
tion, namely the specific lexical entries for modal expressions. We will
first present the logical representations of the two modal operators: 3
and 2, which express possible modality and necessary modality, respec-
tively; then we will introduce the function at, which explicitly indicates
the world at which a dynamic proposition is to be evaluated; finally,
two semantic entries corresponding to the epistemic modals in natural
language: might and would, will be established based on the preceding
knowledge.

Possibility Modal Operator
The modal operator 3 takes a dynamic proposition A (of type Ωi) as
input, and returns another dynamic proposition 3A, which contains an
existential modality. Hence the operator 3 should be of type Ωi → Ωi.
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Its entry is presented as follows:

3 , λAeφi. ∃s j.(R i j∧
base e i j∧
A (copy context e i j)

(λe′j′.φ (reset base (change woi e′ j′)i) i )

j)

(4.28)

The above entry can be understood as follows. The quantifier ∃s
ranges over possible world variables, R denotes the accessible relation,
so ∃s j.R i j means there exists a possible world j which is accessible
from world i. The modal base at world i, namely, the proposition that
is necessarily true at the utterance world, should be satisfied in all of
its accessible worlds, including j. This explains the sub-part base e i j,
which serves as the common background in world j. As to the input
proposition A, it is first applied to a left context, where the environment
at the utterance world i is copied to the newly established possible world
j, this corresponds to copy context e i j. Then, a right context, where
the base at world i is reset to the modal tautology >i, and the world
of interest is switched to world j, is passed to A. Finally, the input
proposition is evaluated at world j.

In conclusion, a dynamic proposition A is possibly true, namely
3A is satisfied, iff there is a possible world j, which is accessible from
the utterance world i, such that:. The propositions which are necessarily true at world i, namely the

modal base at i, should be satisfied at world j;. The possible world j inherits the generalized environment from the
utterance world i, and the base information at the utterance world
i is reset to >i;. The salient world is updated to world j;. The modalized proposition is evaluated at world j.

Now let’s have a look at some example. Assume A is a dynamic
proposition (of type Ωi), where no modality is involved, a is the logical
content of A (of type oi). Namely A is constructed by translating a
with respect to the dynamization rules, see definition 4.5. In order
to illustrate how the above entry of 3 works, we shall contrast the
environment of proposition A and 3A.

Assume mb is the modal base function, which returns the back-
ground information at a given world. For more detail, please refer back



Modal Subordination in Type Theoretic Dynamic Logic / 29

to Kratzer’s theory in section 3.2. The possible worlds hierarchy for
interpreting the dynamic modal proposition A is presented in figure 1,
where circles are used to denote possible worlds, a solid line with an
arrow indicates the accessibility relation, a dotted line means the acces-
sibility relation is not specified. Besides, we use the red color to signify
the salient world, assume the current left context is e, we will term the
salient world ws, namely ws = woi e. For the world of utterance, we
uniquely term it i. Finally, we place the propositions that are true at
each world besides it, e.g., A is besides world i in figure 1. In subsequent
diagrams, we will stick to the same notation style.

i ws

(mb i) ∧ A

Figure 1: Possible Worlds Hierarchy of A

i j

♦A (mb i) ∧ A

Figure 2: Possible Worlds Hierarchy of ♦A

ws i

j1

j2
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...
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(mb i) → A

(mb i) → A

(mb i) → A

(mb i) → A

Figure 3: Possible Worlds Hierarchy of �A

1

FIGURE 1 Possible Worlds Hierarchy of A

By default, proposition A is uttered at world i. Because A is not
concerned with any modality, it is true iff A is satisfied at i. Remark
that (mb i)∧A and A have the same truth conditions, because (mb i)
is already satisfied at i. As shown in figure 1, the interpretation of A
will not change the salient world. In addition, since we do not have
further information on the relation between the utterance world i and
the salient world ws, their accessibility is unspecified. Table 1 lists the
detailed content of the environment at each possible world in question:

Existing World Environment
i 〈a ∧i (bkgd e i), a ∧i (base e i)〉
ws 〈(bkgd e (woi e)), (base e (woi e))〉

TABLE 1 Environment at Each World of A

As a summary, after the interpretation of A, both elements in the
environment at world i, namely the background and base are updated
with a; while the environment at the salient world ws is not modified.

Let’s turn to 3A, its possible worlds hierarchy is depicted in figure 2:
Again, the proposition 3A is uttered at world i. A is possibly true

at the utterance world i, or equivalently, 3A is true at i, iff (mb i) ∧
A is true at an accessible world from i, e.g., j, where (mb i) is the
background information at i. As presented above, the lexical entry of
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FIGURE 2 Possible Worlds Hierarchy of 3A

3 modifies the salient world to the newly established world j. The
detailed content of environment at each world is listed respectively in
table 2:

Existing World Environment
i 〈(bkgd e i),>i〉
j 〈a ∧i (bkgd e i), a ∧i (base e i)〉

TABLE 2 Environment at Each World of 3A

The interpretation of 3A requires an accessible possible world from
the utterance world, in which A is satisfied. Further more, its logical
content a is updated to the environment of the salient world. At the
same time, the base information at the evaluation world is reset to a
modal tautology to avoid information duplication.

Necessity Modal Operator
The modal operator 2 is the one which creates a modality of universal
force. It takes a dynamic proposition, A (of type Ωi) for instance, as
input, and returns a modalized proposition 2A. Hence same as 3, the
operator 2 should also be of type Ωi → Ωi. The entry is presented as
follows:

2 , λAeφi.( ∀s j.(R i j →
(base e i j →

(A (copy context e i j) stopi j))))
∧ φei

(4.29)

The above entry can be understood as follows. The quantifier ∀s
ranges over possible world variables, so ∀s j.R i j means for every pos-
sible world j that is accessible from the utterance world i. The modal
base at world i, namely, the proposition that is necessarily true at the
utterance world, should be satisfied in all of its accessible worlds. This
explains the sub-part base e i j. Different from in 3, where the modal
base is conjuncted, it plays the role of antecedent of an implication in
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the necessity modality. As to the input proposition A, similar to 3, it is
first applied to a left context, where the environment at the utterance
world i is copied to the newly established possible world j, this corre-
sponds to copy context e i j. However, due to the semantics of the
necessity modality, referents introduced in the scope of 2 shall not be
accessed from subsequent context. As a result, the empty continuation
stopi is passed to A, and the current left context will not be modified
after processing the modalized proposition.

In conclusion, a dynamic proposition A is necessarily true, namely
2A is satisfied, iff for every possible world j, if j is accessible from the
utterance world i, then:. The propositions which are necessarily true at world i, namely the

modal base at i, should be satisfied and serve as premise assumption
at world j;. The possible world j inherits the generalized environment from the
utterance world i;. Information at every possible world j is not able to be passed to
subsequent sentences;. The left context is not changed, the utterance world of the modalized
proposition is still i, and proposition A is evaluated at world j.

Now we turn to some example. Like 3A, 2A is also established upon
A. We may compare the following information with the one presented
in figure 1 and table 1, which will not be repeated below any more. The
possible worlds hierarchy of interpreting 2A is illustrated in figure 3:

i ws

(mb i) ∧ A

Figure 1: Possible Worlds Hierarchy of A
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Figure 2: Possible Worlds Hierarchy of ♦A

ws i

j1

j2

j3

...

�A

(mb i) → A

(mb i) → A

(mb i) → A

(mb i) → A

Figure 3: Possible Worlds Hierarchy of �A

1

FIGURE 3 Possible Worlds Hierarchy of 2A
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Same as above, the utterance world is i. A is necessarily true at the
utterance world i, or equivalently, 2A is true at i, iff (mb i) → A is
true at every accessible world from i, where (mb i) is the background
information at i. As discussed above, the lexical entry of 2 does not
modify the salient world, which is still the original ws. Also, the relation
between the salient world and the utterance world is not specified. As
regard to the detailed content of environment at each possible world,
we can refer to table 3:

Existing World Environment
i 〈(bkgd e i), (base e i)〉
j 〈(bkgd e j), (base e j)〉
ws 〈(bkgd e (woi e)), (base e (woi e))〉

TABLE 3 Environment at Each World of 2A

After interpreting a necessity modality, the environment at every
existing world, such as the salient world ws, the utterance world i, and
all its accessible worlds j, keep unchanged. Hence the operator 2 does
not modify the context change potential of the preceding discourse. On
the one hand, it does not change the salient world; on the other hand,
it does not modify the context at any possible world.

Evaluation “at” Some Possible World

A big difference between the interpretation of propositions in classical
logic and modal logic is that, a proposition is evaluated at a specific
possible world in the latter system. Below, we will introduce the func-
tion at, which aims to associate a (modal) proposition with a possible
world.

Intuitively, the at function picks up a particular world for a propo-
sition, where it is to be evaluated. Hence its semantic type ought to be:
s → Ωi → Ωi, where s denotes the target world, the first Ωi denotes
the input proposition, and the second Ωi is the output proposition with
the world information interpolated. We propose its detailed semantic
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entry as follows:

at , λjAeφi.
if (j = i)

(A e φ i)

(base e i j∧
A (up context e j (base e i))

(λe′j′.φ (reset base e′ i)i)
j)

(4.30)

In the above formula, the two input arguments, j andA, stand for the
target world of evaluation and the dynamic proposition to be evaluated,
respectively. The rest of the entry can be understood as follows. Firstly,
the operator if is a logical constant, it is used to determine whether the
target world j is identical to the current utterance world i or not. If the
two worlds happen to coincide, the second argument will be returned.
No modification is needed in this case: the proposition is by default
evaluated in the utterance world. Otherwise, if the proposition is to
be evaluated in another world than the utterance world i, the third
argument will be returned. In this case, the base at i is updated to
the context of the target world j by the context update function (we
do not use the function copy context because it will overwrite the
environment at world j). Further more, same as for 3, after employing
the modal base at world i, we reset it as the modal tautology, this
explains the sub-part reset base e′ i.

In conclusion, a dynamic proposition A, which is uttered at world i,
is interpreted true at another possible world j, iff. The base proposition at the utterance world i is passed to the target

world j;. The context at world j is updated with the base proposition from
world i;. The base of the utterance world i is reset after being employed;. The logical content of proposition A is evaluated at the target world
j.

Finally, same as above, we provide an illustration, which elucidates
the environment of at H A, where H is a possible world constant, A
is the dynamic proposition to be evaluated. Again, we assume a is the
logical content of A. Since at H A is built upon A, we may contrast the
following analysis with the information in figure 1 and table 1, which
will not be repeated here any more.
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First of all, the possible worlds hierarchy of at H A is illustrated in
figure 4:

i

ws

H

at H A

(mb i) ∧ A

if i �= H

i ws

if i = H

at H A, (mb i) ∧ A

Figure 4: Possible Worlds Hierarchy of at H A
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FIGURE 4 Possible Worlds Hierarchy of at H A

We have to distinguish two cases: if the utterance world i is equal to
the target world H, at H A and A are identical formulas, that is to say,
at H A being true at H is equivalent to A being true at i, as shown in
the upper part of figure 4; otherwise, if i and H are different worlds,
at H A is true at i means (mb i) ∧ A is true at H, where (mb i) is
the background information at the utterance world i, as shown in the
lower portion of figure 4. The at function merely evaluates a dynamic
proposition at another world, it does not change the default salient
world ws. Also no explicit accessibility relation among possible worlds,
such as between i and ws, between i and H, can be induced from at.

As to the detailed content of the environment at each world, we
will also have to distinguish the above mentioned two cases. These two
situations are listed separately in table 4:

On the one hand, when the target world H is identical to the utter-
ance world i, the result of at H A is the same as the one for dynamic
proposition A, see table 1. This is exactly what we expect. On the other
hand, when H is different from i, the base proposition of i, together
with the logical content of A, will be updated to the environment of H.
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Existing World Environment

i = H H 〈a ∧i (bkgd e i), a ∧i (base e i)〉
ws 〈(bkgd e (woi e)), (base e (woi e))〉

i 6= H

i 〈(bkgd e i),>i〉
ws 〈(bkgd e (woi e)), (base e (woi e))

H 〈a ∧i (base e i) ∧i bkgd(e,H),
a ∧i (base e i) ∧i base(e,H)〉

TABLE 4 Environment at Each World of at H A

Modal Expressions
In this subsection, we will propose the semantic entries for the linguistic
expressions which trigger epistemic modality, namely the modals: might
and would. The technical details will largely depend on what we have
introduced above. Basically, we will show how to build up complex
entries with 3, 2, and at. We shall start with might, then address
would.

The modal verb might, which introduces the epistemic possibility
modality, is of type Ωi → Ωi. We propose the lexical entry of might as
follows:

JmightKM-TTDL = λAeφi.(at (woi e) (3A))eφi (4.31)
The intuition behind the above formula is as follows: when we say

something might happen, it means that at a particular world (the
salient world), the proposition is possibly true, which logically denotes
that the proposition is satisfied at some accessible world. This is ex-
actly the meaning born within the entry of might as in formula 4.31: a
dynamic proposition A is possibly true with regard to the salient world.

The unfolding of 4.31 is rather tedious, we will not do it here. Instead,
similar as previously, we will provide the possible worlds hierarchy and
the environment status of JmightKM-TTDLA as an illustration. Since
might involves function at, we will have to determine the identity be-
tween the salient world ws and the utterance world i. The following
analysis, which will be divided into two separate cases, is analogous to
the one for at. In addition, since JmightKM-TTDLA is built upon A, we
can compare the following analysis with the information in figure 1 and
table 1, which will not be repeated here any more.

The possible worlds hierarchy of interpreting JmightKM-TTDLA is
illustrated in figure 5, in which we abbreviate JmightKM-TTDLA asM A.
Its environment status is listed in table 5.

If we compare the effect of JmightKM-TTDL with 3, namely figure 5
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FIGURE 5 Possible Worlds Hierarchy of JmightKM-TTDLA

Existing World Environment

i = ws
i 〈(bkgd e i),>i〉
j 〈a ∧i (bkgd e i), a ∧i (base e i)〉

i 6= ws

i 〈(bkgd e i),>i〉
ws 〈(base e i) ∧i (bkgd e (woi e)),>i〉
j

〈a ∧i (base e i) ∧i (bkgd e (woi e)),
a ∧i (base e i) ∧i (base e (woi e))〉

TABLE 5 Environment at Each World of JmightKM-TTDLA
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with figure 2, table 5 with table 2, we can find out that JmightKM-TTDLA
and 3A generate the same result when the default salient world ws
is identical to the utterance world i; however, if the two worlds are
different, JmightKM-TTDLA and 3A will generate different results. This
is because when interpreting JmightKM-TTDLA, a new possible world
j will be established over the salient world ws, rather than over the
utterance world i, as shown in the lower part of figure 5.

Same as might, the entry for the modal verb would is also of type
Ωi → Ωi. Its representation is also made up of previous introduced
entries:

JwouldKM-TTDL = λAeφi.(at (woi e) (2A))eφi (4.32)
The intuition behind the above formula is as follows: when we say

something would happen, it means at the salient world, the proposi-
tion is necessarily true, which logically denotes that the proposition is
satisfied at every accessible world. This is exactly the meaning born
within the entry of would as in formula 4.32: a dynamic proposition A
is necessarily true with regard to the salient world.

Likewise, we are not going to unfold 4.32, but an analogous illus-
tration containing the possible worlds structure and the environment
status will be provided. Same as JmightKM-TTDLA, JwouldKM-TTDLA
is also built upon A, we can compare the following analysis with the
information in figure 1 and table 1.

The possible worlds hierarchy of interpreting JwouldKM-TTDLA is il-
lustrated in figure 6, in which we abbreviate JwouldKM-TTDLA as W A:

The environment status for JwouldKM-TTDLA is listed in table 6.
The two situations, one where i equals ws, and the other where they
are different, are separately presented.

Existing World Environment

i = ws
i 〈(bkgd e i), (base e i)〉
j 〈(bkgd e j), (base e j)〉

i 6= ws

i 〈(bkgd e i),>i〉
ws

〈(base e i) ∧i (bkgd e (woi e)),
(base e i) ∧i (base e (woi e))〉

j 〈(bkgd e j), (base e j)〉

TABLE 6 Environment at Each World of JwouldKM-TTDLA

As motivated by the comparison between might and 3, a cor-
responding contrast can be drawn between JwouldKM-TTDL and 2:
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JwouldKM-TTDLA and 2A yield the same result when the default salient
world ws is identical to the utterance world i, see figure 6 and figure 3,
table 6 and table 3; while when the two worlds are different, the dy-
namic proposition 2A is still uttered at world i, but since the salient
world ws is not i, possibly due to some modality in the preceding dis-
course, the necessity from 2A will be established over ws, rather than
over i.

The entries for might and would share many properties, especially
the way they affect the possible worlds hierarchy in different situations.
However, as we may notice at the same time, JmightKM-TTDL has the
potential to update the salient world, while JwouldKM-TTDL does not. In
addition, JmightKM-TTDL always resets the base of the salient world, the
one based on which new worlds are built upon, while JwouldKM-TTDL

does not.

4.5 From TTDL to M-TTDL
The goal of this subsection is to examine the relation between TTDL
and M-TTDL. We would like to discover whether M-TTDL is able to
cover the paradigm phenomena that dynamic semantics systems are
designed to solve. Because formulas in TTDL and M-TTDL have very
different forms, it is difficult to compare the two systems in a straight-
forward way. Hence we will first introduce a bridging framework, which
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is syntactically similar to TTDL. The new framework is called Propo-
sitional TTDL (P-TTDL), because the left context in the new frame-
work is updated with propositions, rather than discourse referents6.
This is exactly the case in M-TTDL, see formula 4.3. More specifically,
P-TTDL is defined upon M-TTDL by getting rid of modality. In other
words, P-TTDL is a simplified variant of M-TTDL such that it is not
concerned with possible worlds.

First of all, before presenting the formal details of P-TTDL, we de-
fine a mapping function, which is used to abstract variables from a
proposition.

Definition 4.6. Given the signature Σ0, let M ∈ FΣ0 be a simply
typed λ-calculus formula (definition 4.10). The mapping function Mo γ :
o→ (γ → γ) takes M as input, and returns a function (of type γ → γ)
, which appends variables occurring in M to a list of referents, namely:

Mo γ(M) = λe.(x1 :: (... :: (xn :: e)))

where for all x, if x occurs in M , then x ∈ {x1, ..., xn}.
The above function ensures that the left context in P-TTDL is in the

form of a list of discourse referents (of type γ), although it is updated
with propositions. This permits a more direct comparison between P-
TTDL and TTDL on the syntactic level. The function Mo γ will be
used to define the dynamization function in P-TTDL, which we will
see shortly below.

Generally speaking, P-TTDL shares with TTDL most of the tech-
nical details, such as the signature (definition 2.1), the way in which
contexts and propositions are interpreted (formula 2.4). The dynamic
logics of the two frameworks are also alike. For instance, P-TTDL reuses
the dynamic conjunction (formula 2.5) and the dynamic negation (for-
mula 2.6) in TTDL. However, the dynamic existential quantifier in
P-TTDL is slightly different from the one in TTDL:

∃dP -TTDL , λPeφ.∃(λx.Pxeφ) (4.33)
As we can see, ∃dP -TTDL is structurally the same as the dynamic

quantifier ∃ι d
M-TTDL (formula 4.26) in M-TTDL: the former is the ex-

tensional version of the latter. However, unlike the dynamic quantifier
∃dTTDL (formula 2.7) in TTDL, both ∃dP -TTDL and ∃ι d

M-TTDL do not
update the bound variable into the current left context. The reason has
already been mentioned above: M-TTDL and P-TTDL updates propo-

6Please note that P-TTDL is very similar to the framework GL presented in
(Lebedeva, 2012).
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sitions instead of referents into the context, so the dynamic existential
quantifiers in M-TTDL and P-TTDL do not work in the same way as
the one in TTDL.

Now let’s turn to the dynamic translation in P-TTDL. To distinguish
the translation in P-TTDL from the one in TTDL, we introduce the
following new notation.

Notation 4.2. We use the dash-bar notation, for instance M , to de-
note the dynamic translation of a λ-term M in P-TTDL.

Same as in previous continuation-based frameworks (e.g., TTDL, M-
TTDL), the translation of non-logical constants is achieved through the
dynamization function D and the staticization function S. In P-TTDL,
they are simultaneously defined on each other as follows.

Definition 4.7. The dynamization function Dpτ , which takes an
input λ-term A of type (γ → τ), returns an output λ-term A′ of type
τ ; the staticization function Spτ , which takes an input λ-term A′ of
type τ , returns an output λ-term A of type (γ → τ).

. Dpτ is defined inductively on type τ as follows:
1.DpιA = A nil;
2.DpoA = λeφ.(Ae ∧ φ( Mo γ(Ae)e));
3.Dpα→βA = λx.Dpβ(λe.Ae(Spαxe)).. Spτ is defined inductively on type τ as follows:
1.SpιA′ = λe.A′;
2.SpoA′ = λe.A′ e stop;
3.Spα→βA′ = λe.(λx.Spβ(A′(Dpα(λe′.x)))e).

Note that the above definition is analogous to the one in M-TTDL
(definition 4.4), the only difference is between Dpo and Dmoi . As we pre-
sented in section 4.1, the left context in M-TTDL is rather complex,
see formula 4.3. However, since possible worlds are not involved in P-
TTDL, it does not need such a left context of the same complexity.
Hence in P-TTDL, we can directly insert the proposition in the left
context without appealing to the function up context. Moreover, the
function Mo γ is employed to transform the updated proposition into a
list of updated referents.

Based on the above characterizations of Dp and Sp, we can thus
define the dynamic translation of λ-terms in P-TTDL. Before that, we
introduce a new notation for the translation in P-TTDL.

Notation 4.3. We use the dash bar notation, for instance, τ or M , to
denote the dynamic translation of a type τ or a λ-term M in P-TTDL.
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One may compare the following rules with the ones in TTDL (defi-
nition 2.4).

Definition 4.8. The propositional dynamic translation of a λ-
term M (of type τ): M , which is another λ-term of type τ , is defined
as follows:

1. x = x, if x ∈ X ;
2. a = Dpτ (λe.a), if a ∈ CNL and a : τ ;

3. ∧ = ∧, see formula 2.5;

4. ¬ = ¬, see formula 2.6;

5. ∃ = ∃dP -TTDL, see formula 4.33;

6. (MN) = M N ;

7. (λx.M) = λx.M .

Up until now, we have finished presenting the framework P-TTDL.
As one can see, according to its formal details (definition 4.7 and 4.8),
P-TTDL is indeed the unmodalized version of M-TTDL: contexts in the
two systems are updated in the same way (with propositions), also, their
dynamic logics are in parallel. As a result, by comparing P-TTDL with
TTDL, we can indirectly investigate the relation between M-TTDL and
TTDL. This is what we are going to do immediately below.

Firstly, we define a naive signature, which contains two atomic types:
ι and o, denoting the type of individuals and the type of truth values
(propositions), respectively; together with some standard logical con-
nectives.

Definition 4.9. The signature Σ0 is defined as follows:

Σ0 = 〈{ι, o}, {∧,¬,∃}, {∧ : o→ o→ o,¬ : o→ o,∃ : (ι→ o)→ o}〉
Please note that Σ0 may contain a set of non-logical constants as

well. Since the constant will be specified when it is used, we do not list
them in the above definition. We may draw the following lemma for the
dynamization function Dp, which will be used in future proofs.

Lemma 4.1. Given signature Σ0 (definition 4.9), let Mn be a λ-term
of type ι→ ...→ ι︸ ︷︷ ︸

n

→ o, then:

Dι→ ...→ ι︸ ︷︷ ︸
n

→o(λe.Mn) = λx1...xn.Do(λe.Mnx1...xn) (4.34)
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Dpι→ ...→ ι︸ ︷︷ ︸
n

→o(λe.Mn) = λx1...xn.Dpo(λe.Mnx1...xn) (4.35)

Proof. We prove the lemma by induction on the semantic type of Mn,
namely the value of n.

. Let n = 0, then M0 : o. It is obvious that Do(λe.M0) precisely
corresponds to the form λx1...xn.Do(λe.Mnx1...xn).. Let n = 1, then M1 : ι→ o. According to definition 2.3:

Dι→o(λe.M1) = λx1.Do(λe.(λe′.M1)e(Sιx1e))

= λx1.Do(λe.(λe′.M1)ex1)

→β λx1.Do(λe.M1x1)

. Let n = i, x1 a variable, then Mi : ι→ ...→ ι︸ ︷︷ ︸
i

→ o, Mix1 :

ι→ ...→ ι︸ ︷︷ ︸
i−1

→ o. By induction hypothesis:

Dι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.Mix1) = λx2...xi.Do(λe.Mix1x2...xi) (4.36)

Now let’s turn to the dynamic translation of Mi, according to
definition 2.3 and formula 4.39:

Dι→ ...→ ι︸ ︷︷ ︸
i

→o(λe.Mi) = λx1.Dι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.(λe
′.Mi)e(Sιx1e))

= λx1.Dι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.(λe
′.Mi)ex1)

→β λx1.Dι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.Mix1)

= λx1x2...xieφ.(Mix1x2...xi ∧ φe)
(4.37)

Since Dpτ is defined in the similar way as Dτ , in particular, Dα→β and
Dpα→β are identical (see definition 2.3 and 4.7), the equivalence 4.38
can be obtained with exactly the same process. We will thus leave out
the detailed proof for it.

Lemma 4.2. Given the signature Σ0 (definition 4.9), let Mn be a
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λ-term of type ι→ ...→ ι︸ ︷︷ ︸
n

→ o, then:

Dpι→ ...→ ι︸ ︷︷ ︸
n

→o(λe.Mn) = λx1...xn.Dpo(λe.Mnx1...xn) (4.38)

Proof. We prove the lemma by induction on the semantic type of Mn,
namely the value of n.. Let n = 0, then M0 : o. It is obvious that Dpo(λe.M0) precisely

corresponds to the form λx1...xn.Dpo(λe.Mnx1...xn).. Let n = 1, then M1 : ι→ o. According to definition 2.3:

Dpι→o(λe.M1) = λx1.Dpo(λe.(λe′.M1)e(Spιx1e))

= λx1.Dpo(λe.(λe′.M1)ex1)

→β λx1.Dpo(λe.M1x1). Let n = i, x1 a variable, then Mi : ι→ ...→ ι︸ ︷︷ ︸
i

→ o, Mix1 :

ι→ ...→ ι︸ ︷︷ ︸
i−1

→ o. By induction hypothesis:

Dpι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.Mix1) = λx2...xi.Dpo(λe.Mix1x2...xi) (4.39)

Now let’s turn to the dynamic translation of Mi, according to
definition 2.3 and formula 4.39:

Dpι→ ...→ ι︸ ︷︷ ︸
i

→o(λe.Mi) = λx1.Dpι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.(λe
′.Mi)e(Spιx1e))

= λx1.Dpι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.(λe
′.Mi)ex1)

→β λx1.Dpι→ ...→ ι︸ ︷︷ ︸
i−1

→o(λe.Mix1)

= λx1x2...xieφ.(Mix1x2...xi ∧ φe)
(4.40)

In order to characterize the relation between P-TTDL and TTDL,
we still need a couple of extra notions, such as the set of simply typed
λ-calculus formulas provided a signature, free variables and alternative
free variables.
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Definition 4.10. Given signature Σ0 (definition 4.9). Let CNL be a
set of non-logical constants in Σ0, X a set of variables, the set of simply
typed λ-calculus formulas FΣ0

is inductively defined as follows:

1. Pt1...tn ∈ FΣ0
, whenever P ∈ CNL, t1, ..., tn ∈ X ∪ CNL, and

P : ι→ ...→ ι︸ ︷︷ ︸
n

→ o, t1, ..., tn : ι;

2. ¬M1 ∈ FΣ0 , whenever M1 ∈ FΣ0 ;
3. M1 ∧M2 ∈ FΣ0

, whenever M1,M2 ∈ FΣ0
;

4. ∃(λx.M1) ∈ FΣ0
, whenever x ∈ X , M1 ∈ FΣ0

.

Definition 4.11. Given signature Σ0 (definition 4.9). Let CNL be a
set of non-logical constants in Σ0, X a set of variables, the set of free
variables of a non-logical constant a or a variable x, in notation FV (a)
or FV (x), is defined as follows:

1. FV (a) = ∅, whenever a ∈ CNL;
2. FV (x) = {x}, whenever x ∈ X .

Definition 4.12. Given the signature Σ0. Let M ∈ FΣ0
be a simply

typed λ-calculus formula (definition 4.10). The set of free variables
of M , in notation FV (M), is inductively defined as follows:

1. FV (Pt1...tn) = FV (t1) ∪ ... ∪ FV (tn), where t1, ..., tn ∈ T , n is
the arity of P;

2. FV (¬φ) = FV (φ);
3. FV (φ ∧ ψ) = FV (φ) ∪ FV (ψ);
4. FV (∃x.φ) = FV (φ)− {x}.
For a simply typed λ-calculus formula M , if FV (M) is an empty

set, namely AFV (φ) = ∅, we say M is an closed formula.

Definition 4.13. Given the signature Σ0. Let M ∈ FΣ0
be a simply

typed λ-calculus formula (definition 4.10). The set of alternative free
variables of M , in notation AFV (M), is inductively defined in terms
of the free variable function FV (definition 4.11 and 4.12) as follows:

1. AFV (Pt1...tn) = FV (Pt1...tn);
2. AFV (¬M1) = ∅;
3. AFV (M1 ∧M2) = AFV (M1) ∪AFV (M2);
4. AFV (∃(λx.M1)) = AFV (M1)− {x}.
For a simply typed λ-calculus formula M , if AFV (M) is an empty

set, namely AFV (φ) = ∅, we say M is an alternative closed for-
mula. For the relation between the two functions FV and AFV , we
can consult the following lemma.
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Lemma 4.3. Given the signature Σ0. For any simply typed λ-calculus
formula M ∈ FΣ0

, the set of its alternative free variables is included in
the set of its free variables, namely:

∀M ∈ FΣ0 : AFV (M) ⊆ FV (M) (4.41)

Proof. We prove the lemma by induction on the form of M .

1. LetM = Pt1...tn, where P ∈ CNL, t1, ..., tn ∈ X∪CNL. According
to definition 4.13:

AFV (M) = FV (M)

Hence AFV (M) ⊆ FV (M).
2. Let M = ¬M1, where M1 ∈ FΣ0 is a simply typed λ-calculus

formula. According to definition 4.13:

AFV (M) = ∅
Since the empty set ∅ is a subset of any other set, so AFV (M) ⊆
FV (M).

3. Let M = M1 ∧M2, where M1,M2 ∈ FΣ0
are simply typed λ-

calculus formulas. According to definition 4.12 and 4.13:

FV (M) = FV (M1) ∪ FV (M2)

AFV (M) = AFV (M1) ∪AFV (M2)

By induction hypothesis, we know that:

AFV (Mi) ⊆ FV (Mi), where i ∈ {1, 2}
The union of subsets is a subset of the union of their supersets.
As a result, AFV (M) ⊆ FV (M).

4. Let M = ∃(λx.Px ∧ M1), where M1 ∈ FΣ0
is a simply typed

λ-calculus formula. According to definition 4.12 and 4.13:

FV (M) = FV (Px ∧M1)− {x}
= FV (Px) ∪ FV (M1)− {x}
= {x} ∪ FV (M1)− {x}
= FV (M1)− {x}

AFV (M) = AFV (M1)− {x}
By induction hypothesis, we know that:

AFV (M1) ⊆ FV (M1)
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By subtracting the same element in a subset and its superset,
the inclusion still holds between the two new sets. As a result,
AFV (M) ⊆ FV (M).

As a result, given Σ0, AFV (M) is a subset of FV (M) for every
simply typed λ-calculus formula M ∈ FΣ0

.

Finally, we propose the following lemma, which links the two frame-
works: P-TTDL and TTDL, together. The lemma is immediately fol-
lowed by its proof.

Lemma 4.4. Given the signature Σ0, letM ∈ FΣ0
be a simply typed λ-

calculus formula (definition 4.10). Its dynamic translation under TTDL
M and its dynamic translation under P-TTDL M bear the following
relation:

M = λeφ.M(x1 :: (... :: (xm :: e)))φ (4.42)

where {x1, ..., xm} = AFV (M). That is to say, the two dynamic terms
M and M are identical, except that the alternative free variables of
M are updated into the left context of the former but not of the latter.

Proof. We prove the lemma by induction on the form of M .

1. Let M = Pt1...tn, where P ∈ CNL, t1, ..., tn ∈ X ∪ CNL. Since M
is an atomic formula, according to definitions 4.13, 4.12 and 4.11,
all variables occurring inM are free variables, and are alternative
free variables as well, namely:

AFV (M) = FV (M) = {x1, ..., xm} = {t1, ..., tn}∩X , where m ≤ n
(4.43)

(a) First we examine M . Since P is of type ι→ ...→ ι︸ ︷︷ ︸
n

→ o,

according to definition 2.4 and lemma 4.1:

P = Dι→ ...→ ι︸ ︷︷ ︸
n

→o(λe.P) = λx1...xn.Do(λe.Px1...xn)

(4.44)

Since t1, ..., tn ∈ X ∪ CNL, and all of them are of type ι,
according to definitions 2.4 and 2.3:

ti = ti, for all i ∈ {1, ..., n} (4.45)
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Finally, according to definitions 2.4 and 2.3, formulas 4.44
and 4.45:

M = Pt1...tn = P t1...tn = Pt1...tn
= λx1...xn.Do(λe.Px1...xn)t1...tn

�β Do(λe.Pt1...tn)

= λeφ.Pt1...tn ∧ φe

(4.46)

By updating the alternative free variables ofM (formula 4.43)
into the current left context of M , we can obtain:

λeφ.M(x1 :: (... :: (xm :: e)))φ

=λeφ.(λe′φ′.Pt1...tn ∧ φ′e′)(x1 :: (... :: (xm :: e)))φ

�βλeφ.Pt1...tn ∧ φ(x1 :: (... :: (xm :: e)))

(4.47)

(b) Then let’s turn to M . Since P is of type ι→ ...→ ι︸ ︷︷ ︸
n

→ o,

according to definition 4.8 and lemma 4.2:

P = Dpι→ ...→ ι︸ ︷︷ ︸
n

→o(λe.P) = λx1...xn.Dpo(λe.Px1...xn)

(4.48)

Since t1, ..., tn ∈ X ∪ CNL, and all of them are of type ι,
according to definitions 4.8 and 4.7:

ti = ti, for all i ∈ {1, ..., n} (4.49)

Finally, according to definitions 4.8 and 4.7, formulas 4.48
and 4.49:

M = Pt1...tn = P t1 ... tn = P t1...tn

= λx1...xn.Dpo(λe.Px1...xn)t1...tn

�β Dpo(λe.Pt1...tn)

= λeφ.Pt1...tn ∧ φ(( Mo γ Pt1...tn)e)

= λeφ.Pt1...tn ∧ φ(x1 :: (... :: (xm :: e)))

(4.50)

Hence, by comparing formulas 4.47 and 4.50, we can draw that
when M = Pt1...tn, M and M only differ on the context infor-
mation regarding the alternative free variables in M .
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2. Let M = ¬M1, where M1 ∈ FΣ0 is a simply typed λ-calculus
formula. By induction hypothesis:

M1 = λeφ.M1(x11 :: (... :: (x1m :: e)))φ (4.51)

where {x11, ..., x1m} = AFV (M1). In addition, because M is a
negation, according to definition 4.13, there is no alternative free
variable in M , namely:

AFV (M) = ∅ (4.52)
(a) First we examineM . According to definition 2.4, formula 2.6:

M = ¬M1 = ¬M1 = ¬dTTDLM1

= (λAeφ.¬(A e stop) ∧ φe)M1

→β λeφ.¬(M1 e stop) ∧ φe
(4.53)

Updating the alternative free variables ofM into the current
left context of M will not change M because AFV (M) is
simply an empty set (see formula 4.52).

(b) Then let’s turn to M . According to definition 4.8, formu-
las 2.6 and 4.51:

M = ¬M1 = ¬ M1 = ¬dTTDLM1

= (λAeφ.¬(A e stop) ∧ φe)M1

→β λeφ.¬(M1 e stop) ∧ φe

= λeφ.¬((λe′φ′.M1(x11 :: (... :: (x1m :: e′)))φ′) e stop) ∧ φe
�β λeφ.¬(M1(x11 :: (... :: (x1m :: e)))stop) ∧ φe

(4.54)
Since the empty continuation stop will block all the variables in
the left context, the resulting terms in formulas 4.53 and 4.54 are
the same, namely:

M = λeφ.¬(M1(x11 :: (... :: (x1m :: e)))stop) ∧ φe

= λeφ.¬(M1 e stop) ∧ φe = M
(4.55)

As a result, whenM = ¬M1, M andM only differ on the context
information regarding the alternative free variables in M . Partic-
ularly, they are identical in this case (see formula 4.55) because
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AFV (M) = ∅.

3. Let M = M1 ∧ M2, where M1,M2 ∈ FΣ0 are simply typed
λ-calculus formulas. By induction hypothesis, we can draw for-
mula 4.51 for M1 and the following similar formula for M2:

M2 = λeφ.M2(x21 :: (... :: (x2m′ :: e)))φ (4.56)

where {x21, ..., x2m′} = AFV (M2). In addition, according to def-
inition 4.13, the alternative free variables in M are the union of
the alternative free variables in M1 and M2, namely:

AFV (M) = AFV (M1)∪AFV (M2) = {x11, ..., x1m, x21, ..., x2m′}
(4.57)

(a) First we examine M . According to definition 2.4 and for-
mula 2.5:

M = M1 ∧M2 = M1∧M2 = M1 ∧dTTDLM2

= (λABeφ.Ae(λe′.Be′φ)) M1 M2

�β λeφ.M1e(λe
′.M2e

′φ)

(4.58)

By updating the alternative free variables ofM (formula 4.57)
into the current left context of M , we can obtain:

λeφ.M(x11 :: (... :: (x1m :: (x21 :: (... :: (x2m′ :: e))))))φ

=λeφ.(λeφ.M1e(λe
′.M2e

′φ))(x11 :: (... :: (x1m ::

(x21 :: (... :: (x2m′ :: e))))))φ

�βλeφ.M1(x11 :: (... :: (x1m :: (x21 ::

(... :: (x2m′ :: e))))))(λe′.M2e
′φ)

(4.59)

(b) Then let’s turn to M . According to definition 4.8, formu-
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las 2.5, 4.51 and 4.56:

M = M1 ∧M2 = M1 ∧ M2 = M1 ∧dTTDL M2

= (λABeφ.Ae(λe′.Be′φ)) M1 M2

�β λeφ.M1 e(λe
′.M2 e

′φ)

= λeφ.(λeφ.M1(x11 :: (... :: (x1m :: e)))φ)e

(λe′.(λeφ.M2(x21 :: (... :: (x2m′ :: e)))φ)e′φ)

�β λeφ.(M1(x11 :: (... :: (x1m :: e)))

(λe′.(M2(x21 :: (... :: (x2m′ :: e′)))φ)))

(4.60)

As we can see from formula 4.60, elements of AFV (M1) and
AFV (M2) are updated into the left context of M sequentially.
This is the same as updating all the variables all at once. So the
resulting terms in formulas 4.59 and 4.60 are the same, namely:

M = λeφ.(M1(x11 :: (... :: (x1m :: e)))

(λe′.(M2(x21 :: (... :: (x2m′ :: e′)))φ)))

= λeφ.M1(x11 :: (... :: (x1m :: (x21 :: (... :: (x2m′ :: e))))))(λe′.M2e
′φ)

= λeφ.M(x11 :: (... :: (x1m :: (x21 :: (... :: (x2m′ :: e))))))φ

(4.61)

Consequently, when M = M1 ∧M2, M and M only differ on the
context information regarding the alternative free variables inM .

4. Let M = ∃(λx.M1), where x ∈ X , M1 ∈ FΣ0
. By induction

hypothesis:

M1 = λeφ.M1(x :: (x1 :: (... :: (xm :: e))))φ (4.62)

where {x, x1, ..., xm} = AFV (M1). In addition, according to defi-
nition 4.13, the alternative free variables inM are the alternative
free variables in M1 excluding x, namely:

AFV (M) = AFV (M1)− {x} = {x1, ..., xm} (4.63)
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(a) First we examineM . According to definition 2.4, formula 2.7:

M = ∃(λx.M1) = ∃(λx.M1) = ∃dTTDL(λx.M1)

= (λPeφ.∃(λx.Px(x :: e)φ))(λx.M1)

�β λeφ.∃(λx.M1(x :: e)φ)

(4.64)

By updating the alternative free variables ofM (formula 4.63)
into the current left context of M , we can obtain:

λeφ.M(x1 :: (... :: (xm :: e)))φ

=λeφ.(λe′φ′.∃(λx.M1(x :: e′)φ′))(x1 :: (... :: (xm :: e)))φ

�βλeφ.∃(λx.M1(x :: (x1 :: (... :: (xm :: e))))φ)

(4.65)

(b) Then let’s turn to M . According to definition 4.8, formu-
las 4.33, 4.62:

M = ∃(λx.M1) = ∃ (λx.M1 ) = ∃dP -TTDL(λx.M1 )

= (λPeφ.∃(λx.Pxeφ))(λx.M1 )

�β λeφ.∃(λx.M1 eφ)

= λeφ.∃(λx.(λe′φ′.M1(x :: (x1 :: (... :: (xm :: e′))))φ′)eφ)

�β λeφ.∃(λx.M1(x :: (x1 :: (... :: (xm :: e))))φ)

(4.66)

Finally, by comparing formulas 4.65 and 4.66, we can draw that
when M = ∃(λx.M1), M and M only differ on the context in-
formation regarding the alternative free variables in M .

As a result, given a simply typed λ-calculus formula M , M differs

from M only on the aspect that after interpreting M , the alternative
free variables of M are updated into the current left context, while it
is not the case for M .

In our semantic analysis, we are only interested in closed formulas,
which do not contain any free variable. As indicated by lemma 4.3,
for any simply typed λ-calculus formula, the set of its alternative free
variables are included in its set of free variables. Hence closed formulas
do not contain alternative free variable, as well (the only subset of an
empty set is itself). Then according to lemma 4.4, the two frameworks:
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P-TTDL and TTDL, will always obtain the same result, because they
only differ in the left context concerning alternative free variables. Since
P-TTDL is defined as the unmodalized version of M-TTDL, we thus
conclude that M-TTDL and TTDL are compatible in all cases where
no modality is involved.

To conclude, TTDL is linked with P-TTDL by lemma 4.4, P-TTDL
is linked with M-TTDL by its definition (complicating P-TTDL with
the notion of possible world will result in M-TTDL). Relations between
the three frameworks are depicted in figure 7.To conclude, TTDL is linked with P-TTDL by lemma 4.4, P-TTDL is linked

with M-TTDL by its definition (complicating P-TTDL with the notion of possi-
ble world will result in M-TTDL). Relations between the three frameworks are
depicted in figure 7.

TTDL P-TTDL M-TTDL
Lemma 4.4 Integrating

possible world

Figure 7: Relations between TTDL, P-TTDL, and M-TTDL

4.6 Illustration
4.6.1 Other Lexical Entries

With the systematic way of dynamization in section 4.3, we can obtain the
semantic representation for other linguistic elements in a purely compositional
way, exactly the same as what we did previously in sections ?? and ??.

We will take transitive verb (e.g., beat) as an example and conduct its trans-
lation step by step.

1. The standard entry for beat :

�beat� = λOS.S(λx.O(λy.beat x y))

It takes two NPs and yields a proposition, its type is ((ι → o) → o) →
((ι→ o) → o) → o.

2. As shown in section 4.3:

�beat�m
= λOS.S(λx.O(λy.beat x y))

m

= λOS.S(λx.O(λy.beat x y))
m

= λOS.S(λx.O(λy.beat
m

x y))

3. The predicate symbol beat is of type ι → ι → oi, according to defini-
tion 4.4:

beat
m

= Dm
ι→ι→oi

(λe.beat)
= λx.Dm

ι→oi
(λe.(λe�.beat)e(Sm

ι xe))

→β λx.Dm
ι→oi

(λe.beat x)

= λxy.Dm
oi

(λe.(λe�.beat x)(Sm
ι ye))

→β λxy.Dm
oi

(λe.beat x y)

→β λxyeφi.((λe�.beat x y)ei ∧ φ(up context e i ((λe�.beat x y)e))i)

�β λxyeφi.(beat x y i ∧ φ(up context e i (beat x y))i)

47

FIGURE 7 Relations between TTDL, P-TTDL, and M-TTDL

4.6 Illustration

Other Lexical Entries

With the systematic way of dynamization in section 4.3, we can obtain
the semantic representation for other linguistic elements in a purely
compositional way. We will conduct the step by step translation for
two lexical entries. First, we look at the common noun wolf.

1. The standard entry for wolf :

JwolfK = λx.wolf x

It takes an individual as input, and yields a proposition, its type
is ι→ o.

2. According to definition 4.5:

JwolfKm = λx.wolf x
m

= λx.wolf x
m

= λx.wolf
m
x

3. The predicate constant wolf is of type ι→ o, hence according to
definition 4.4:
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wolf
m

= Dmι→oi(λe.wolf)
= λx.Dmoi(λe.(λe

′.wolf)e(Sdnι xe))

→β λx.Dmoi(λe.wolf(S
dn
ι xe))

= λx.Dmoi(λe.wolf x)

= λxeφi.((λe′.wolf x)ei ∧ φ(up context e i ((λe′.wolf x)e))i)

�β λxeφi.(wolf x i ∧ φ(up context e i (wolf x))i)

4. As a result, based on the result of the previous step, we can
obtain:

JwolfKm = λx.wolf
m
x

= λx.(λx′eφi.(wolf x′ i ∧ φ(up context e i (wolf x′))i))x
→β λxeφi.(wolf x i ∧ φ(up context e i (wolf x))i)

In the above formula, x is of type ι, hence JwolfKm is of type ι→
Ωi. Same as for previous entries involving elementary functions,
we will not unfold the complete entry.

For the indefinite article a, its stepwise dynamization is as follows:

1. The standard entry for a:

JaK = λPQ.∃(λx.Px ∧Qx)

It takes two properties and returns a proposition, its type is (ι→
o)→ (ι→ o)→ o.

2. According to definition 4.5:

JaKm = λPQ.∃(λx.Px ∧Qx)
m

= λPQ.∃(λx.Px ∧Qx)
m

= λPQ.∃m(λx.Px ∧m Qx)

= λPQ. ∃ι d
M-TTDL(λx.Px ∧dM-TTDL Qx)

3. According to formula 4.24 and 4.26:

JaKm = λPQ. ∃ι d
M-TTDL(λx.Px ∧dM-TTDL Qx)

= λPQ.(λP ′eφ.( ∃ι i(λx.P
′xeφ)))

(λx.(λABeφ.Ae(λe′.Be′φ))(Px)(Qx))

�β λPQeφ. ∃ι i(λx.Pxe(λe
′.Qxe′φ))

= λPQeφi. ∃ι (λx.Pxe(λe′.Qxe′φ)i)
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P and Q are of type ι → Ωi, hence JaKm is of type (ι → Ωi) →
(ι→ Ωi)→ Ωi.

The translations of other syntactic categories should be rather
straightforward, we will not proceed any further. Before closing this
subsection, we would like to draw attention to the lexical entry of
pronouns. Syntactically, a pronoun belongs to the NP category. Its
semantic type ought to be (ι → o) → o. However, in standard logical
semantics such as MG, no explicit entry for pronoun is provided. It
is simply treated as a variable bound by the quantifier from the an-
tecedent in standard logical semantics. In the vocabulary of M-TTDL,
we have introduced the choice operator sel. Different from the one in
previous frameworks, the sel in M-TTDL is of type (ι → o) → o → ι,
based on an input property, it retrieves an individual from the back-
ground proposition. So the dynamic entry for pronoun, such as he and
it, can be given as follows:

JheKm = λPeφi.P (sel (λx.human x i ∧male x i) (bkgd e i i))eφi
(4.67)

JitKm = λPeφi.P (sel (λx.¬(human x i)) (bkgd e i i))eφi (4.68)

P is of type ι → Ωi, hence both JheKm and JitKm are of type (ι →
Ωi)→ Ωi.

Discourses
The purpose of this subsection is to show how the framework M-TTDL
can be applied to handle linguistic examples, which are concerned with
modality, in particular modal subordination. In what follows, we will
compositionally compute the logical representation of the discourse
based on the above proposed lexical entries.

Firstly, let’s start with a simple example, where modality is only in-
volved in the second part of the discourse, hence the indicated anaphoric
link is felicitous.

(12) A wolfi walks in. Iti might growl.

The first sentence in example (12) does not contain modality. Its
semantic representation in M-TTDL can be computed as follows:

J(12)-1KM-TTDL = Jwalk inK(JaKJwolfK)m

The second part, where the modal might appears, is translated in
the following way:
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J(12)-2KM-TTDL = JmightKM-TTDL(JgrowlKJitK)m

The detailed lexical entry for pronoun it can be found in for-
mula 4.68. Remark that the choice operator sel in M-TTDL has a
different type as the one in TTDL (see definition 4.1). We do not give
the complete unfolding of the logical formulas because their sizes are
rather huge. Instead, we will directly present the result of discourse in-
crementation, which will be applied to the empty left context nili, the
empty continuation stopi, and the world constant H. Same as before,
assume the conjunction is the connective for sentence sequencing, then:

J(12)KM-TTDL nili stopi H
= (J(12)-1KM-TTDL∧mJ(12)-2KM-TTDL) nili stopi H
�β ∃ι x.(wolf x H ∧walk in x H∧

∃s j.(R H j ∧ ((walk in x j ∧wolf x j)∧
growl (sel (λx.¬(human x j)) (walk in x j ∧wolf x j)) j)))

In the above formula, the choice operator sel should select a variable
from its second argument: the proposition (walk in x j ∧ wolf x j),
based on the criteria from its first argument, namely λx.¬(human x j).
Since variable x is the only candidate, assume sel makes the correct
choice, the above representation can be further reduced into:

J(12)KM-TTDL nili stop H
�β ∃ι x.(wolf x H ∧walk in x H∧

∃s j.(R H j ∧ ((walk in x j ∧wolf x j) ∧ growl x j)))
Assume H is the world of utterance, the semantics of the above

formula is: there is a wolf which walks in at the actual world H, and at
an accessible possible world j, there is also a wolf which walks in, and
it also growls at j. This is exactly what (12) means.

In addition, the framework M-TTDL can successfully block the in-
felicitous anaphoras as in the following examples, where the referents
are introduced within the scope of modal operators:

(13) a. A wolfi might walk in. *Iti growls.
b. A wolfi would walk in. *Iti growls.

The interpretations of the first two sentences are calculated as fol-
lows:

J(13-a)-1KM-TTDL = JmightKM-TTDL(Jwalk inK(JaKJwolfK))m
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J(13-b)-1KM-TTDL = JwouldKM-TTDL(Jwalk inK(JaKJwolfK))m

They share the same second part:

J(13-a)-2KM-TTDL = J(13-b)-2KM-TTDL = JgrowlKJitKm

The following steps are the same as for the previous example, we
will give the final result directly. For (13-a):

J(13-a)KM-TTDL nili stopi H
= (J(13-a)-1KM-TTDL∧mJ(13-a)-2KM-TTDL) nili stopi H
�β ∃s j.(R H j ∧ ∃ι x.(wolf x j ∧ (walk in x j∧

growl (sel (λx.¬(human x H)) >) H)))

The above formula means that there is an accessible world j from
the actual world H, in which a wolf walks in. And at the actual world,
there is some individual that growls. But since the choice operator
sel does not have a proper proposition from which it can pick up a
referent, the anaphora in (13-a) can not be resolved. Assume A is the
proposition expressed by a wolf walks in, B is the one expressed by it
growls,M denotes the entry of might, then the possible worlds hierarchy
of example (13-a) is depicted in figure 8:

i ws

j1

j2

j3

...

W A

(mb ws) → A

(mb ws) → A

(mb ws) → A

(mb ws) → A

if i �= ws

i

j1

j1

j2

...

if i = ws

W A

(mb i) → A

(mb i) → A

(mb i) → A

(mb i) → A

Figure 6: Possible Worlds Hierarchy of �would�M-TTDLA
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Figure 7: Relations between TTDL, P-TTDL, and M-TTDL
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FIGURE 8 Possible Worlds Hierarchy of Example (13-a)

The anaphor it occurs at world H, while the referent corresponding
to a wolf is introduced in j. As a result, the anaphoric link can not be
resolved. It is the similar case for (13-b), although the detailed logical
representation is different:

J(13-b)KM-TTDL nili stopi H
= J(13-b)-1KM-TTDL∧mJ(13-b)-2KM-TTDL nili stopi H
�β ∀s j.(R H j → ∃ι x.(wolf x j ∧ (walk in x j∧

growl (sel (λx.¬(human x H)) >) H)))

The above formula means that for all accessible worlds from the
actual world H, there is a wolf walking in at it. At the same time, there
is some individual who growls at the actual world. But this growing
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individual can not be properly resolved as any referent. Its possible
worlds hierarchy is provided in figure 9:
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B
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FIGURE 9 Possible Worlds Hierarchy of Example (13-b)

No discourse referent is introduced at world H, where the anaphor
it occurs. Hence the anaphora is problematic.

Now let’s consider a more complex discourse concerning modal sub-
ordination, where modalities are involved in both component sentences.
It is in a parallel structure as example (6) in section 1.2:

(14) A wolfi might walk in. Iti would growl. (Asher and Pogodalla,
2011)

The first sentence of (14) is identical to (13-a)-1, hence:

J(14)-1KM-TTDL = J(13-a)-1KM-TTDL

= JmightKM-TTDL(Jwalk inK(JaKJwolfK))m

The representation for the second sentence can be achieved in a
similar way:

J(14)-2KM-TTDL = JwouldKM-TTDL(JgrowlKJitK)m

Following the previous examples, the discourse incrementation for
(14) is also straightforward. We will directly give the final result:
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J(14)KM-TTDL nili stopi H
= J(14)-1KM-TTDL∧mJ(14)-2KM-TTDL nili stopi H
�β ∃s j.(R H j ∧ ∃ι x.(wolf x j ∧walk in x j∧

∀s k.(R j k → ((wolf x k ∧walk in x k)→
(growl (sel (λx.¬(human x k)) (wolf x k ∧walk in x k)) k)))))

Now the choice operator sel will select a non-human variable at world
k from the proposition (wolf x k ∧walk in x k), where x is the only
possibility. Hence we can further reduce the above formula as follows:

J(14)KM-TTDL nili stopi H
�β ∃s j.(R H j ∧ ∃ι x.(wolf x j ∧walk in x j∧

∀s k.(R j k → ((wolf x k ∧walk in x k)→ (growl x k)))))

This means there exists a possible world j which is accessible from
the actual world H, a wolf walks in at j; and at every accessible world
k from j, if the wolf walks in, then it growls. This corresponds to the
semantics of the original discourse (14). Again, we provide its possible
worlds hierarchy as follows.

H
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j3

...

W A

B

A

A

A

A

Figure 9: Possible Worlds Hierarchy of Example ??
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FIGURE 10 Possible Worlds Hierarchy of Example (14)

Finally, we will examine a last example, which switches back and
forth between the modal mode and the factual mode. For the sake of
convenience, we stick to the same vocabulary by simplifying example
(18) from (Stone, 1999):
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(15) A wolfi might walk in. John has a gunj . John would use itj to
shoot iti.

We first have to compute the semantic representation for each com-
ponent sentence. As we can see, (15)-1 is exactly the same as (13-a)-1
and (14)-1, we will not repeat it here any more. For the remaining two
sentences, we have:

J(15)-2KM-TTDL = JhaveK(JaKJgunK)JJohnKm

J(15)-3KM-TTDL = JwouldKM-TTDL(JuseKJitK(JshootKJitK)JJohnK)m

The semantic representation of the whole discourse is obtained by
straightforwardly sequencing the three component sentences with dy-
namic conjunction. Same as before, we apply it to the empty left con-
text nili, the empty continuation stopi, and the world constant H. The
reduced formula is as follows:

J(15)KM-TTDL nili stopi H
= (J(15)-1KM-TTDL∧

mJ(15)-2KM-TTDL∧
mJ(15)-3KM-TTDL) nili stopi H

�β ∃s j.(R H j) ∧ ( ∃ι x.(wolf x j) ∧ ((walk in x j)∧
( ∃ι y.(gun y H) ∧ ((have john y H) ∧ (((have john y j) ∧ (gun y j))∧
(∀k.(R j k) → ((((have john y k) ∧ (gun y k)) ∧ ((walk in x k) ∧ (wolf x k))) →

(use
john
(sel (λx.¬(human x k))

(((have john y k) ∧ (gun y k)) ∧ ((walk in x k) ∧ (wolf x k))))
(shoot

john
(sel (λx.¬(human x k))

(((have john y k) ∧ (gun y k)) ∧ ((walk in x k) ∧ (wolf x k))))
k)

k))))))))

As we can see, both choice operators can select a non-human variable
at world k from the sub-formula (((have john y k) ∧ (gun y k)) ∧
((walk in x k) ∧ (wolf x k)). Let’s assume the first sel picks up y, the
second picks up x, then the above formula can be further reduced to:

J(15)KM-TTDL nili stopi H
�β ∃s j.(R H j) ∧ ( ∃ι x.(wolf x j) ∧ ((walk in x j)∧

( ∃ι y.(gun y H) ∧ ((have john y H) ∧ (((have john y j) ∧ (gun y j))∧
( ∀s k.(R j k) → ((((have john y k) ∧ (gun y k))∧

((walk in x k) ∧ (wolf x k))) → (use john y (shoot john x k) k))))))))
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The semantics of the above complex formula is: there is a possible
world j accessible from the actual world H, a wolf walks in at j; further
more, John owns a gun at the actual world H; in addition, in every
possible world k which is accessible from j, if the wolf walks in, then
John uses the gun to shoot the wolf. As a result, all the anaphoric links
in discourse (15), which are across the modal mode and the factual
mode, can be correctly accounted for.

5 Conclusion and Future Work
Anaphora is a critical machinery of natural language. The aim of this
paper was to study the semantics of one specific type of anaphora:
inter-sentential pronominal anaphora, from the discourse perspective.
More specifically, this paper was concerned with the phenomenon of
modal subordination, and the constraints on interpretation of subse-
quent anaphoras and modal sentences.

The solution we proposed involves extending the dynamic framework
TTDL. Another system in the simply typed λ-calculus family, namely
M-TTDL, has been developed. We have formally shown that M-TTDL
is closely linked to TTDL such that the former has at least the same
empirical coverage as the latter. Further more, M-TTDL is able to ac-
count for both the felicitous and infelicitous anaphoras under various
number of modality-involved discourses. TTDL and DN-TTDL have
advantage over other dynamic theories because they stick to the tra-
ditional Montagovian style: the only operations involved are standard
α-conversions and β-reductions. Hence the principle of compositionality
is retained without adding any new concept to classical logic.

However, the empirical data addressed here is only a small part in
the semantics of anaphora and modality. A potential continuation of
the current research is to broaden the coverage of our framework. For
instance, in the following set of examples, the lifespan of a discourse
referent is longer than M-TTDL would expect:

(16) a. You must write a letteri to your parents. Iti has to be
sent by airmail. The letter must get there by tomorrow.
(Karttunen, 1969)

b. Mary wants to marry a rich mani. Hei must be a banker.
(Karttunen, 1969)

c. Harvey courts a girli at every convention. Shei always
comes to the banquet with him. The girli is usually very
pretty. (Karttunen, 1969)

d. A traini leaves every hour for Boston. Iti always stops in
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New Haven. (Sells, 1985)
e. Every chess set comes with a spare pawni. Iti is taped to

the top of the box. (Sells, 1985)

At a first glance, the above examples, in particular, (16-c), (16-d),
and (16-e), where no modality is involved, can be generalized as modal
subordination. The quantifications in these examples can be treated in
an analogous way as modality7: the quantification is over objects such
as situation or time, while modality ranges over possible worlds. Ac-
cording to M-TTDL, the indefinite introduced under the scope of some
modal operator is accessible to subsequent modal context. However,
this rule is only admitted when the first modality is existential, which
is not the case in any of (16). To account for examples such as (16),
one will have to investigate the environments under which the scope of
universal modality can be extended. Obviously, the current version of
M-TTDL does not take that into consideration.

In addition, the accessibility of discourse referents seems to be ex-
ceptional when modality and negation are involved at the same time:

(17) John won’t buy a cari because he wouldn’t have room for iti
in his garage. (Partee, 1973)

In the above example, the first part is in factual mood, the second
part is modalized, this pattern falls well under the cases to be handled
in M-TTDL. However according to M-TTDL, discourse referents intro-
duced in the scope of (single) negation is not accessible from outside.
So the indefinite a car in (17) should not serve as antecedent for any
subsequent anaphor. Nevertheless, the anaphoric link in (17) is fairly
acceptable. As suggested by (Partee, 1973), the auxiliary would requires
the presence of a subordinate clause with if or unless, except when it
is used to express volition or habit. Hence (17) can be regarded as an
abbreviation for the following sentence:

(18) John won’t buy a car because if he did buy a cari, he wouldn’t
have room for iti in his garage. (Partee, 1973)

In the paraphrase (18), there are two occurrences of a car. The pro-
noun it is anaphorically related to the second occurrence rather than
the first one. With this paraphrase, the anaphora can be successfully
accounted for in M-TTDL. Similar examples include:

7The second sentence in example (16-e) is assumed to contain a covert universal
quantifier: it can be paraphrased as it is always taped to the top of the box.



62 / LiLT volume , issue

(19) a. I didn’t submit a paperi. They wouldn’t have published
iti. (Kibble, 1994)

b. John didn’t buy a mystery noveli. He would be reading iti
by now. (Krifka, 2001)

c. Mary didn’t buy a microwavei. She would never use iti.
(Frank, 1997)

d. Fred didn’t draw a picturei. He would have made a mess
of iti. (Frank, 1997)

In like manner as example (18), discourses in (19) can be paraphrased
as follows:

(20) a. I didn’t submit a paper. If I had submitted a paperi, they
wouldn’t have published iti. (Kibble, 1994)

b. John didn’t buy a mystery novel. If he had bought a
mystery noveli, he would be reading iti by now. (Krifka,
2001)

c. Mary didn’t buy a microwave because if she had bought a
microwavei she would never have used iti. (Frank, 1997)

d. Fred didn’t draw a picture because if he had drawn a
picturei he would have made a mess of iti. (Frank, 1997)

The interesting thing we can draw from the above examples is that,
it is the counterfactual that has been accommodated in the modal base.
In order to acquire M-TTDL the ability to account for examples such
as (17) and (19), we should at least tackle two fundamental questions.
Firstly, the condition that triggers the accommodation ought to be pre-
cisely specified, e.g., the presence of the modal auxiliary would. More
importantly, we will need to determine which factual proposition(s)
should be negated. It seems that we always accommodate the counter-
factual of the nearest preceding sentence, but this generalization has to
be verified by more examples.

Finally on the theoretical side, future work can be concerned with
the formal properties of various dynamic systems. A comparison of
various frameworks, including M-TTDL, TTDL, DRT and DPL, can
be discussed in more detail.
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